Complexation of the airborne radioelectronic radar systems for the indirect identification of objects

Radiolocation and radio navigation


Аuthors

Ivanov S. L.*, Avramov A. V.**, Tkachenko S. S.***

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: st.iv.84@mail.ru
**e-mail: andry_a@inbox.ru
***e-mail: tkachenss@mail.ru

Abstract

Means of the radar system with active response are used nowadays to identify objects detected by side-looking airborne radars. Analysis of the experience of using a radar system with active response testifies its lack of effectiveness, especially in terms of multi-purpose complex and signal-jamming environment. A perspective approach to the development of the systems of identification of objects is formation of systems of indirect identification. Functioning of such systems is based on the use of information on the types (classes) of the observed objects and comparison of this information with a priori information on the types of objects used by the warring parties of the conflict. On Board of the aircraft the radar station and the station of electronic intelligence can be attributed to the sources of information on the types of the observable objects.

The aim of this work is the development and research into the algorithm of the indirect identification of objects using information from the airborne radar and the station of electronic intelligence. The problem statement of the development of the algorithm of the indirect identification of objects is made to achieve this goal. The type, state affiliation, class of object and index of its identity with the source of radio emission, observed by an electronic intelligence station are considered to be parameters describing the state of the identifiable object, observed by a radar station. Statistical relations between types and state affiliation, types and classes of objects are formalized by using the appropriate conditional probabilities. Dynamics of change of the parameters of the state of the identifiable object in a discrete-time is described using Markov and nominal-Markov chains. Also it is assumed that the airborne radar makes decisions on the type of the identified object, and the electronic intelligence station makes decisions on the class of the observed source of radio emission. The accuracy of the generated solutions is known and described by the corresponding probability matrixes. In addition, decisions on their identification are formed according to the coordinates of the observed objects that are measured by the stations. The accuracy of these decisions is described by the corresponding probability matrix. Rules of forming the decisions that are optimal in criterion of the maximum of the posteriori probability on the state affiliation and type of the identified object are derived with the use of the Bayesian approach.

Surveillance of the airborne radar and the electronic intelligence station, and also the information on the statistical relations and the dynamics of change of the state parameters are used in the calculation of the posterior probability of the state parameters of the identifiable object. The comparison of the algorithm with its simplified version is made in the interest of the study of the efficiency factor of the developed algorithm of the indirect identification. As a result it is concluded that the gain in the accuracy of the indirect identification of objects from the use of the algorithm may exceed 10% in terms of determining the state affiliation and exceed 30% in terms of determining their types.

Keywords:

identification of objects, complex information processing, radar, electronic intelligence receiver

References

  1. Shirman Ya.D. Radioelektronnye sistemy. Osnovy postroeniya i teoriya (Radioelectronic systems. Basic construction and theory), Moscow, Radiotekhnika, 2007, 512 p.

  2. Istoriya razvitiya i perspektivy sovershenstvovaniya sistemy i sredstv gosudarstvennogo opoznavaniya. Radioelektronnye tekhnologii Rossii Al’manakh (History of the development and prospects of the improvement of the system and means of public recognition. Electronic technology Russia. Almanac), Moscow, Assotsiatsiya "Liga sodeistviya oboronnym predpriyatiyam, 2012, 408 p.

  3. Khodarenok M. Nezavisimoe voennoe obozrenie, 2003, no. 13, URL: http://nvo.ng.ru/armament/2000-12-15/6_parol.html.

  4. Bystrov A.V. Zhurnal radioelektroniki, 2012, no. 2, URL: http://jre.cplire.ru/jre/feb12/9/text.html.

  5. Zhironkin S.B., Avramov A.V., Bystrakov S.G. Uspekhi sovremennoi radioelektroniki, 1997, no. 5.pp. 71-74.

  6. Tkachenko S.S., Avramov A.V., Ivanov S.L. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2010, no. 11, vol. 6. pp. 104-107.

  7. Tkachenko S.S., Avramov A.V. Uspekhi sovremennoi radioelektroniki, 2010, no. 11, pp. 15-20.

  8. Tkachenko S.S., Ivanov S.L., Trushchinskii A.Yu. Teoriya i tekhnika radiosvyazi, 2013, no. 4, pp. 26- 30.

  9. Tkachenko S.S. Teoriya i tekhnika radiosvyazi, 2015, no. 3, pp. 46 50.

  10. Seliverstov D. V., Ivanov S. L. Trudy MAI, 2012, no. 51: http://www.mai.ru/science/trudy/published.php?ID=29169

  11. Majorov D. A., Perehozhev V. A., Shemjakov A. O. Trudy MAI, 2013, no. 71: http://www.mai.ru/science/trudy/published.php?ID=47077

  12. Bystrov A.V., Mitrofanov D.G. Zarubezhnaya radioelektronika, 1996, no. 2. pp. 53-57.

  13. Who Goes There: Friend or Foe? U.S. Government Printing Office. Washington, U.S. Congress, Office of Technology Assessment, 1993. 84 p.

  14. Fedosov E.A. Aviatsiya PVO Rossii i nauchno-tekhnicheskii progress. Boevye kompleksy i sistemy vchera, segodnya, zavtra (Defensive air force of Russia and scientific-technical progress. Combat complexes and systems yesterday, today and tomorrow), Moscow, Drofa, 2001, 816 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход