Noise suppression method for MEMS angular velocity sensors

Navigation instruments


Аuthors

Belousov E. O.

National Research University of Electronic Technology, 1, sq. Shokina, Moscow, Zelenograd, 124498, Russia

e-mail: kinddm@gmail.com

Abstract

Gyroscopes or angular velocity sensors are considered main component part of inertial navigation systems which are used for determining coordinates in space in absence of external reference sources. In present microelectromechanical sensors are widely applied because of their advantages such as small size, low power and cost. These advantages allow MEMS gyroscopes to be implemented on board of robotic unmanned landed or aerial vehicles.

Operation principle of the MEMS gyroscope involves measuring Coriolis force that is applied to vibrating or oscillating body. In this work semiconductor vibrating ring is considered as such body. Readout circuit provides an excitation signal to the resonating body while sensing and demodulating input signal which is modulated by the resonance frequency. Errors and nonidealities of the gyroscope consist of nonidealities of the microelectromechanical structure as well as integrated readout circuit. Both of these noise sources provide thermal and flicker noise to the output signal.

This work proposes a noise suppression method for the readout circuit using additional adaptive feedback. This feedback circuit senses corner frequency of the input signal and adjusts readout bandwidth and output noise in accordance with this corner frequency. Model of sensor and readout circuit was developed in order to estimate dynamic and noise performance of the system. Adaptive system architecture that consists of frequency sensing loop and decision device was proposed. Analysis of the adaptive system was performed which resulted in addition of reconfigurable compensation circuits to the system. Proposed method increases average signal-to-noise ratio by 5 dB which leads to increased horizontal positioning accuracy by 3,4 m after one minute integration.

Keywords:

MEMS sensors, inertial navigation systems, integrated circuits, servo systems

References

  1. Tarygin I.E., Kozlov A.V. Trudy MAI, 2016, no. 89: http://www.mai.ru/science/trudy/published.php?ID=73319

  2. Koch J., Hillenbrand C., Berns K. «Inertial navigation for wheeled robots in outdoor terrain,» Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo ’05., 2005, pp. 169-174.

  3. Barshan B., Durrant-Whyte H.F. «Inertial navigation systems for mobile robots,» in Robotics and Automation, IEEE Transactions on , vol.11, no.3, pp.328-342, Jun 1995

  4. Perov A.I., Dneprov V.V. Trudy MAI, 2015, no. 82: http://www.mai.ru/science/trudy/eng/published.php?ID=58810

  5. Tikhomirov A., Omelyanchuk E., Semenova A. Radio Wave Propagation Impact on Signal Parameters of Local Positioning Systems. 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (2016 ElConRusNW). 2-3 February, Saint-Petersburg, Russia, pp.490-494.

  6. Ayazi F., Najafi K. Design and Fabrication of A High-Performance Polysilicon Vibrating Ring Gyroscope. In Proceedings of the Eleventh Annual International Workshop on MEMS, Heidelberg, Germany, 25–29 January 1998, pp. 621–626.

  7. Ayazi F., Najafi K.A. HARPSS polysilicon vibrating ring gyroscope. J. Microelectromechanical Syst. 2001, no.10, pp. 169–179.

  8. He G., Najafi K. A Single-Crystal Silicon Vibrating Ring Gyroscope. In Proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 20–24 January 2002; pp. 718–721.

  9. Lefevre H. The Fiber-Optic Gyroscope. Norwood, MA: Artech House, 1993.

  10. Aaltonen L. Integrated Interface Electronics For Capacitive Mems Inertial Sensors. PhD thesis — Aalto University School of Science and Technology, 2010. 155 s.

  11. Timoshenkov S.P., Anchutin S.A., Plekhanov V.E., Kochurina E.S., Timoshenkov A.S., Zuev E.V. Nano-i mikrosistemnaya tekhnika, 2014, no. 5, pp. 18–25.

  12. Aaltonen L., Kalanti A., Pulkkinen M., Paavola M., Kamarainen M. and Halonen K.A.I. «A 2.2 mA 4.3 mm ASIC for a 1000 /s 2-Axis Capacitive Micro-Gyroscope,» in IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1682-1692, July 2011.

  13. Timoshenko A., Tafintsev K., Lomovskaya K., Lisov A. Analog-Controlled Feedback for Predistortion of GaN Power Amplifier // Proceedings of 2015 9th International Conference on Application of Information and Communication Technologies (AICT). — Rostov-on-Don, Russia, 14-16 October 2015, pp. 352–355.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход