Unmanned aerial vehicle positioning based on photographic image and inertial measurements

Navigation instruments


Antonov D. A.*, Zharkov M. V.**, Kuznetsov I. M.***, Lunev E. M.****, Pron'kin A. N.*****

Integration center branch of the Irkut Corporation, 5, Aviazionny pereulok, Moscow, 125167, Russia

*e-mail: oxface@yandex.ru
**e-mail: mv_zharkov@mai.ru
***e-mail: im_kuznetsov@mai.ru
****e-mail: e.m.lunev@gmail.com
*****e-mail: an.pronkin@gmail.com


Onboard equipment of middle range (MR) grade (UAV) must include an advance navigation complex, forming navigation data for control system. This data must meet high accuracy, availability, integrity and continuity requirements to provide safe flight and successful flight mission execution. In addition, hardware of MR UAV navigation complex must meet high weight and size, power consumption and final cost requirements.

Meeting mentioned requirements causes use of low-cost and small-size systems and sensors of primary information, which in its turn causes the necessity of use primary data processing mathematical techniques, allowing to achieve defined performance. Required accuracy provision at different stages of flight for this UAV grade simultaneously increasing control automation today is not completely solved task. Landing is one of the most complex stages of flight and capability of automated landing depends heavily on the accuracy of navigation parameters determining.

The majority of existing systems providing automatic UAV landing proposes use of global navigation satellite system (GNSS) integrated with inertial navigation system (INS). However, it is well known, that GNSS signals cannot be always available including jamming cases. Therefore, it is advisable to explore possibilities of INS integration with other systems, which are free of GNSS disadvantages to analyze the potential accuracy of navigation parameters determining. Based on photogrammetry artificial landmark image processing attitude and navigation system (photogrammetry system — PS) is sel ected as such system in this article, which has a high degree of autonomy and of insensitivity to interference as compared with GNSS. Due to the principle of its action PS is commonly used at landing stage and for its operation uses the photographic image fr om the onboard camera, which is usually a part of UAV onboard equipment.

An option of scheme design and algorithms of INS and PS integration for use at UAV landing stage is offered. Required for synthesis of integration algorithms mathematical errors models of INS and PS are considered.


unmanned aerial vehicle, inertial navigation system, photogrammetry, complex information processing, landing system


  1. Aleshin B.S., Afonin A.A., Veremeenko K.K. Orientatsiya i navigatsiya podvizhnykh ob"ektov: sovremennye informatsionnye tekhnologii (Moving Object Attitude Determination and Navigation: modern information technology), Moscow, Fizmatlit, 2006, 421 p.

  2. Aleshin B.S., Antonov D.AVeremeenko., K.K., Zimin R.Yu., Zharkov M.V., Kuznetsov I.M., Pron’kin A.N. Trudy MAI, 2012, no. 54: http://www.mai.ru/science/trudy/published.php?ID=29692

  3. Lunev E.M. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 2, pp. 150–159.

  4. Kuznetsov A.G. Trudy MAI, 2011, no 45: http://www.mai.ru/science/trudy/published.php?ID=25425

  5. Lunev E.M. Trudy MAI, 2011, no. 45: http://www.mai.ru/science/trudy/published.php?ID=25431&PAGEN_2=2

  6. Lunev E.M., Pavlova N.V. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 16, no. 6, pp. 111–119.

  7. Veremeenko K.K., Zheltov S.Yu., Kim N.V. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatakh (Modern information technologies in problems of navigation and guidance of unmanned maneuverable aircraft), Moscow, Fizmatlit, 2009, 556 p.

  8. Stepanov O.A. Giroskopiya i navigatsiya, 2002, no. 1 (36), pp. 23-45.


mai.ru — informational site MAI

Copyright © 2000-2024 by MAI