Interplanetary Trajectory Optimization of Spacecraft Driven by Solar Electric Propulsion System with Cluster of Similar Thrusters

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Woo S. W.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: sanukk@hanmail.net

Abstract

Interplanetary space missions often require large velocity increment leading to necessity to use the main solar electric propulsion systems (SEPS) with high specific impulse to decrease propellant consumption. Electric propulsion system with constant power consumption makes it necessary either excessive increase in the size and mass of the solar arrays or excessive decrease in the consumed power and thrust to provide SEPS operation at the greatest distance from the Sun. Therefore usage of non-adjustable thrusters leads to necessity of using a cluster of the thrusters in the composition of SEPS to permit most efficient power regulation of SEPS using maximum permissible number of operating thrusters depending on the available electric power. The interplanetary trajectory optimization of spacecraft driven by solar electric propulsion system with cluster of similar thrusters is considered. Fixed-time propellant minimization problem is considered. The technique uses Pontryagin maximum principle to reduce the optimal control problem to the boundary value problem and continuation method to reduce the boundary value problem to the initial value problem. Solution of the power-limited trajectory optimization problem is used as initial guess values for initial values of the costate variables. The power-limited trajectory optimization method does not require a user-supplied initial guess. The continuation parameter is introduced into right-hand parts of differential equations of optimal motion to provide the coincidence of these differential equations to the power-limited problem at zero value of the parameter and to the staircase-thrust problem when the parameter equals to one. The smoothed dependencies of the step function of thrust switching and staircase-thrust function are used to provide convergence of the continuation technique. Numerical experiments show good convergence and computational productivity of the presented technique. Presented numerical examples demonstrate importance of consideration the stepped thrust profile at early phases of mission design.

Keywords:

solar electric propulsion system, heliocentric trajectory, Pontryagin maximum principle, continuation technique

References

  1. Englander J.A., Vavrina M.A., Hinckley D. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints. AAS/AIAA Spaceflight Mechanics Meeting, Napa Valley, California, USA, 2016, 20 p.

  2. Whiffen G.J. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design. AIAA/AAS Astrodynamics Specialist Conference and Exhibi, Keystone, Colorado, USA, 2006, 12 p.

  3. Sims J., Finlayson P., Rinderle E., Vavrina M., Kowalkowski T. Implementation of a low-thrust trajectory optimization algorithm for preliminary design. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, USA, 2006, 10 p.

  4. Petukhov V.G. Optimization of interplanetary trajectories for spacecraft with ideally regulated engines using the continuation method. Cosmic Research, 2008, no. 46(3), pp. 219-232.

  5. Petukhov V.G. One Numerical Method to Calculate Optimal Power-Limited Trajectories. International Electric Propulsion Conference, 1995, 8 p.

  6. Petukhov V.G. Method of continuation for optimization of interplanetary low-thrust trajectories. Cosmic Research, 2012, no. 50(3), pp. 249-261.

  7. Petukhov V.G., Konstantinov M.S., Fedotov G.G. 1st ACT Global Trajectory Optimisation Competition: Results found at Moscow Aviation Institute and Khrunichev State Research and Production Space Center. ActaAstronautica, 2007, no. 61(9), pp. 775-785.

  8. Ivanyukhin A.V., Petukhov V.G. The thrust minimization problem and its applications. Cosmic Research, 2015, no. 53(4), pp. 300-310.

  9. Bate R.R., Mueller D.D., White J.E. Fundamentals of Astrodynamics, New York, Dover Publications, 1971, pp. 333–334.

  10. Squire W., Trapp G. Using complex variables to estimate derivatives of real functions. SIAM (Society for Industrial and Applied Mathematics) Review, 1998, vol. 40, no. 1, pp. 110-112.

  11. Standish E.M., Newhall X.X., Williams J.G., Folkner W.F. JPL Planetary and Lunar Ephemerides, DE403/LE403. Jet Propulsion Laboratory Interoffice Memorandum (IOM 343-04-008), 1995, 18 p.

  12. Soyuz User’s Manual. Issue 2. Revision 0, Arianespace, 2012, 244 p.

  13. Nakles M.R., Hargus W.A., Delgado J.J., Corey R.L. A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster. 32nd International Electric Propulsion Conference (IEPC-2011-003), Weisbaden, Germany, 2011, 12 p.

  14. Leb Kh.V., Petukhov V.G. Popov G.A. Trudy MAI, 2011, no. 42, available at: http://www.mai.ru/science/trudy/published.php?ID=24275

  15. Konstantinov M.S., Petukhov V.G., Leb Kh.V. Trudy MAI, 2012, no. 60, available at: http://www.mai.ru/science/trudy/published.php?ID=35372

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход