Pulse signal transmission in the meander line without distortions by near-end crosstalk

Radio engineering, including TV systems and devices


Аuthors

Surovtsev R. S.*, Zabolotsky A. M.**, Gazizov T. R.***

Tomsk State University of Control Systems and Radioelectronics, 40, Lenin str., Tomsk, 634050, Russia

*e-mail: surovtsevrs@gmail.com
**e-mail: zabolotsky_am@mail.ru
***e-mail: talgat@tu.tusur.ru

Abstract

The possibility of pulse signal transmission in a turn of meander line without distortions of its waveform by near-end crosstalk is shown. First of all, the paper presents a brief review of investigations devoted to meander delay lines and approaches to minimization of the signal distortions in these lines. Then the condition of the signal transmission without distortions is formulated and the optimization of cross section parameters and the length of meander line turn is performed in accordance with this condition and for line matching with measuring tract. According to the optimization, a printed circuit board with meander line turn prototypes is produced from the two-side fiberglass FR-4, and the experimental investigations based on combined oscilloscope С9-11 are executed. Finally, the experimental results are presented as an example of one turn with length of 151 mm providing delay of 1 ns. Signals with duration of 440 and 280 ps at half of the maximum amplitude value are accounted. It is shown that waveform of the pulse with duration of 440 ps is affected by near-end crosstalk, which is evident at the signal rise and fall as the positive and negative step with amplitude of 53 mV. If duration of a signal is decreased to 280 ps, the near-end crosstalk pulse with amplitude 52 mV arrives before the rise beginning and after the fall ending and has no impact on its waveform and makes up 10% of the signal amplitude. Thus, the possibility of pulse signal transmission without distortions by near-end crosstalk is experimentally proved.

Keywords:

meander line turn, per-unit-lengths delay, even and odd modes

References

  1. Lysenko A.A., Lyachek Yu.T., Polubasov O.B. Izvestiya Sankt-Peterburgskogo gosudarstvennogo elektrotekhnicheskogo universiteta LETI, 2011, no. 9, pp. 61–65.

  2. Rubin B.J., Singh B. Study of meander line delay in circuit boards. IEEE Transactions on Microwave Theory and Techniques, 2000, vol. 48, pp. 1452–1460.

  3. Ramahi O.M., Archambeault B. Full-wave analysis of delay lines. Proceedings of the 14th International Zurich Symposium and Technical Exhibition on EM, 2001, pp. 537–539.

  4. Bhobe A.U., Lolloway C., Piket-May M. Meander delay line challenge problems: a comparison using FDTD, FEM and MoM. IEEE International Symposium on Electromagnetic Compatibility, 2001, vol. 2, pp. 805–810.

  5. Archambeault B., Roden A., Ramahi O. Using PEEC and FDTD to Solve the Challenge Delay Line Problem. IEEE EMC International Symposium. Montreal, Canada, 2001, vol. 2, pp. 1–4.

  6. Wu R.-B., Chao F.-L. Laddering Wave in Serpentine Delay Line. IEEE Transactions on Components, Packaging, and Manufacturing Technоlogy: part B, advanced packaging. Institute of Electrical and Electronics Engineers, 1995, vol. 18, no. 4, pp. 644–650.

  7. Wu R.-B. Flat Spiral Delay Line Design with Minimum Crosstalk Penalty. IEEE Transactions on Components, Packaging, and Manufacturing Technоlogy: part B, advanced packaging. Institute of Electrical and Electronics Engineers, 1995, vol. 19, no. 2, pp. 397–402.

  8. Kim G., Kam D.G., Kim J. TDR/TDT Analysis by Crosstalk in Single and Differential Meander Delay Lines for High Speed PCB application. IEEE International Symposium on Electromagnetic Compatibility, Portland, USA, 2006, vol. 3, pp. 657–662.

  9. Sudo T., Kudo J., Ko Y., Ito K. Experimental Characterization and Numerical Modeling Approach of Meander Delay Lines. IEEE EMC International Symposium, Minneapolis, 2002, vol. 2, pp. 711–715.

  10. Kabiri A., He Q., Kermani M.H., Ramahi O.M. Design of a Controllable Delay Line. IEEE Transactions on Advanced Packaging, 2010, vol. 33, no. 4, pp. 1080–1087.

  11. Zabolotskii A.M., Gazizov T.R. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2007, no. 3, pp. 21–24.

  12. Jones E.M.T., Bolljahn J.T. Coupled-Strip-Transmission-Line and Directional Couplers. IRE Transactions on Microwave Theory and Techniques, 1956, vol. 4, no. 2, pp. 75–81.

  13. Schiffman B.M. A New Class of Broad-Band Microwave 90-Degree Phase Shifters. IRE Transactions on Microwave Theory and Techniques, 1958, vol. 6, no. 2, pp. 232–237.

  14. Zysman G.I., Johnson A.K. Coupled Transmission Line Networks in an Inhomogeneous Dielectric Medium. IRE Transactions on Microwave Theory and Techniques, 1969, vol. 17, no. 10, pp. 232–237.

  15. Wu T.L., Buesink F., Canavero F. Overview of Signal Integrity and EMC Design Technologies on PCB: Fundamentals and Latest Progress. IEEE Transactions on Electromagnetic Compatibility, 2013, vol. 55, no. 4, pp. 624–638.

  16. Klykov A.V., Kirillov V.Yu. Trudy MAI, 2012, no. 57, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=30760

  17. Kirillov V.Yu., Klykov A.V., Nguen V.Kh. Trudy MAI, 2013, no. 71, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=46938

  18. 18 Gazizov T.R., Zabolotsky A.M. Infokommunikatsionnye tekhnologii, 2006, vol. 4, no. 3, pp. 34–38.

  19. Surovtsev R.S., Zabolotskii A.M., Gazizov T.R., Orlov P.E. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2014, no. 4(34), pp. 34–38.

  20. Kuksenko S.P., Zabolotskii A.M., Melkozerov A.O., Gazizov T.R. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2015, no. 2(36), pp. 45–50.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход