Noise immunity increase of GLONASS users’ navigation equipment by complexation with inertial navigation sensors
Radiolocation and radio navigation
Аuthors
*, **Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia
*e-mail: vf_ivanov@list.ru
**e-mail: vka@mil.ru
Abstract
High reliability and adequacy of navigational sightings is the definitive requirement to the aircraft modern navigation complexes. This requirement is especially topical for spacecraft navigation systems in conditions of jamming impact. Experience of navigation equipment operation reveals the presence of a pronounced threshold effect occurring due to implementation of tracking systems for navigation signals processing, i. e. with noise intensity increase the increase of position measurement error is observed, and a certain noise threshold intensity leads to navigation task failure. To enhance the noise tolerance of navigation complexes methods of the user’s navigation equipment complexation with inertial sensors can be used. The proposed method of deep complexation compared to conventional methods allows reduce the probabilities of false captures by tracking meters and signal parameters tracking failure; compensate the object’s dynamics impact on tracking systems; and reduce the tracking rings’ astatism. The pointed above method was used to simulate the navigation complex operation on a software receiver. The ability of using incomplete set of navigation equipment structural elements while realization of deep complexation method is demonstrated. Simulation of navigation complex operation based on deep complexation method revealed the possibility of noise tolerance enhancement to certain types of noise by the stable operation of tracking systems. The proposed complexation method combined with software realization of navigation equipment should increase the efficiency and reliability of navigational sighting in conditions of complex interference situation.
Keywords:
users’ navigation equipment, noise tolerance, complexation, inertial navigation systemsReferences
-
Aleshin B.S., Antonov D.A., Veremeenko K.K., Zharkov M.V., Zimin R.Yu., Kuznetsov I.M., Pron’kin A.N. Trudy MAI, 2012, no. 54, available at: https://www.mai.ru/science/trudy/published.php?ID=29692
-
Valaitite A.A., Nikitin D.P., Sadovskaya E.V. Trudy MAI, 2014, no. 77, available at: http://www.mai.ru/science/trudy/published.php?ID=53172
-
Mishin A.Yu., Frolova O.A., Isaev Yu.K., Egorov A.V. Trudy MAI, 2010, no. 38, available at: http://www.mai.ru/science/trudy/published.php?ID=14161
-
GLONASS. Interfeisnyi kontrol’nyi document. Redaktsiya 5.1 (Interface checking document. Edition 5.1), Moscow, Rossiiskii nauchno-issledovatel’skii institut kosmicheskogo priborostroeniya, 2008, 60 p.
-
Solov’ev Yu.A. Sistemy sputnikovoi navigatsii (Systems of satellite navigation), Moscow, EKO-TRENDZ, 2000, 268 p.
-
Solov’ev Yu.A. Radiotekhnika, 1999, no. 1, pp. 3-21.
-
Fateev V.F. Infrastruktura malykh kosmicheskikh apparatov (Infrastructure of small spacecraft), Moscow, Radiotekhnika, 2011, 432 p.
-
Perov A.I., Harisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Building principles and operation), Moscow, Radiotekhnika, 2010, 800 p.
-
Bakholdin V.S., Gerasimenko V.S., Dobrikov V.A, Dubinko Yu.S., Ivanov V.F., Sakhno I.V., Tkachev E.A. Materialy II Vserossiiskoi konferentsii «Fundamental’noe i prikladnoe koordinatno—vremennoe obespechenie», Saint Petersburg, 2005, pp. 168-170.
-
Babakov V.N., Bakholdin V.S., Borsuk O.A., Gerasimenko I.S., Dobrikov V.A., Dubinko Yu.S., Ivanov V.F., Luk’yanenko A.V., Sakhno I.V., Simonov A.B., Tkachev E.A. Patent RU № 2336631, 20.10.08.
-
Aisfeller B., Kroie K., Sanroma D., Lyuk T. Giroskopiya i navigatsiya, 2003, no. 2(41), pp. 47–64.
-
Ladetto K., Mermino B. Giroskopiya i navigatsiya, 2003, no. 2(41), pp. 65–77.
Download