Simulation of fractional aircraft control systems by spectral method in Faber-Schauder function system

Mathematica modeling, numerical technique and program complexes


Аuthors

Rybin V. V.*, Tsvetaev V. E.*

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: dep805@mai.ru

Abstract

Today a variety of Computer Mathematics Systems (CMS) and expansion packs are applied for the spectral method of non-stationary control systems computer simulation. Modern technologies associated with fractal approach in different applied areas, and in radio engineering, radiodetection and theory of dynamic systems in particular, produce new element base, where mathematical models contain fractional integrating and derivative operators.

For example, control systems with PID control realize control laws, increasing processing speed and stability margin compared to the similar systems realizing classical control laws. Technical implementation of such derivatives and integrals can be realized with several methods: by Gruenwald’s approximate dependencies, or continued fractions, or Fourier transform and spectral transform.

Spectral method is already propagated to control systems for models containing fractional integrating and derivative components, and the expansion packs MLSY_SM, Spektr_SM+Simulink+Matlab, Spektr_SM+VisSim+Mathcad CMS have been modified for such systems’ simulation. This software commplex does not contain program packs in the Faber-Schauder function system.

The presented paper considers the development of the MLSY_SM SCM Mathcad expansion pack for non-stationary uninterrupted non-stationary control systems with integer number and fractional order spectral method in the Faber-Schauder functions system analysis.

Derivation of spectral algorithms with fractional integrating and derivative components of an arbitrary order and of some other spectral characteristics is based on using a symbolic processor of Computer Mathematics Systems Mathcad. Software implementation of the expansion pack MLSY_SM_SH+Mathcad contains software modulus developed using the derived symbolic algorithms. The structure of the pack and its program modules calls are described in Appendix. The expansion pack itself is used for analyzing and parametric synthesizing of the control system for homing missile. Mathematical model of the missile uses a target coordinator (mounted on a gyro-platform) for measuring the sight line rotational speed. Differential equation, describing the target coordinator, contains a fractional order derivative.

As a result of the performed work the expansion pack MLSY_SM_SH of Computer Mathematics Systems Mathcad applied for investigation on a stochastic model homing system which uses a fractional target seeker was developed. The dependence of the root mean missing value from differential operator fractional order of target coordinator and navigation constant of command generation block was studied. Optimal values of a fractional parameter and navigation constants were selected. A comparative analysis of homing missile system’s classical and fractional models was carried out.

Keywords:

non-stationary control systems, spectral form of mathematical description, Faber-Schauder function system, Computer Mathematics Systems, fractional integrating and derivative elements

References

  1. Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Integrals and derivatives of fractional order and some of their applications), Minsk, Nauka i tekhnika, 1987, 688 p.

  2. Tarasov V.E. Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka (Models of theoretical physics with integro-differentiation of fractional order), Moscow-Izhevsk, Izhevskii institut komp’yuternykh issledovanii, 2011, 568 p.

  3. Uchaikin V.V. Metod drobnykh proizvodnykh (Method of fractional derivatives), Ulyanovsk, Artishok, 2008, 510 p.

  4. Vasil’ev V.V., Simak L.A. Drobnoe ischislenie i appraksimatsionnye metody v modelirovanii dinamicheskikh sistem (Fractional calculus and approximation methods in dynamical systems modeling), Кiev, NAN Ukrainy, 2008, 255 p.

  5. BabenkoYu.I. Metod drobnogo differentsirovaniya v prikladnykh zadachakh teplomasso obmena (Method of fractional differentiation in applied problems of heat and mass transfer), St.-Petersburg, Professional, 2009, 584 p.

  6. Potapov A.A., Gil’mutdinov A.Kh., Ushakov P.A. Fraktal’nye elementy i radio sistemy: Fizicheskie aspekty (Fractal elements and radio systems: Physical aspects), Moscow, Radiotekhnika, 2009, 200 p.

  7. Bekmachev D.A., Potapov A.A., Ushakov P.A. Uspekh i sovremennoi radioelektroniki, 2011, no. 5, pp. 13–20.

  8. Solodovnikov V., Semenov V., Peshel’ M., Nedo D. Raschet sistem upravleniya na TsVM: spektral’nyi i interpolyatsionnyi metody (Calculation of control systems on a computer: spectral and interpolation methods), Moscow, Mashinostroenie, 1979, 664 p.

  9. Solodovnikov V.V., Semenov V.V. Spektral’naya teoriya nestatsionarnykh sistem upravleniya (Spectral theory of non-stationary control systems), Moscow, Nauka, 1974, 336 p.

  10. Semenov V.V., Rybin V.V. Algoritmicheskoe i programmnoe obespechenie rascheta nestatsionarnykh nepreryvno-diskretnykh sistem upravleniya LA spektral’nym metodom (Algorithmic and software support for unsteady continuous-discrete control systems for aircraft calculating using spectral method), Moscow, MAI, 1984, 84 p.

  11. Pupkov K.A., Egupov N.D., Rybakov K.A., Rybin V.V., Sotskova I.L. Nestatsionarnye sistemy avtomaticheskogo upravleniya: analiz, sintezi, optimizatsiya (Non-stationary automatic control systems: analysis, synthesis and optimization), Moscow, MGTU im. N.E. Baumana, 2007, 632 p.

  12. Panteleev A.V., Rybakov K.A., Sotskova I.L. Spektral’nyi metod analiza nelineinykh stokhasticheskikh sistem upravleniya (Spectral method of nonlinear stochastic control systems analysis), Moscow, Vuzovskaya kniga, 2006, 392 p.

  13. Panteleev A.V., Rybakov K.A. Prikladnoi veroyatnostnyi analiz nelineinykh sistem upravleniya spektral’nym metodom (Applied probabilistic analysis of nonlinear control systems by the spectral method), Moscow, MAI-Print, 2010, 160 p.

  14. Rybakov K.A., Rybin V.V. Modelirovanie raspredelennykh i drobno-raspredelennykh protsessov i sistem upravleniya spektral’nym metodom (Modeling of distributed and fractional-distributed processes and control systems by spectral method), Moscow, MAI, 2016, 160 p.

  15. Rybin V.V. Modelirovanie nestatsionarnykh nepreryvno-diskretnykh sistem upravleniya spektral’nym metodom v sistemakh komp’yuternoi matematiki (Simulation of non-stationary continuous-discrete control systems by spectral method in computer mathematics systems), Moscow, Izd-vo MAI, 2011, 220 p.

  16. Rybin V.V. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 4, pp. 102–118.

  17. Rybin V.V. Trudy MAI, 2012, no. 50, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=28987

  18. Rybin V.V. Trudy MAI, 2012, no. 50, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=28812

  19. Rybin V.V. Modelirovanie nestatsionarnykh sistem upravleniya tselogo i drobnogo poryadka proektsionno-setochnym spektral’nym metodom (Modeling of non-stationary control systems of integer and fractional order by projection-grid spectral method), Moscow, Izd-vo MAI, 2013, 160 p.

  20. Rybin V.V. Trudy MAI, 2009, no. 33, URL: http://www.mai.ru/science/trudy/eng/published.php?ID=7352

  21. Rybin V.V. Trudy MAI, 2003, no. 10, URL: http://www.mai.ru/science/trudy/eng/published.php?ID=34572

  22. Rybin V.V. Trudy MAI, 2003, no. 13, URL: http://www.mai.ru/science/trudy/eng/published.php?ID=34432

  23. Rybin V.V. Trudy MAI, 2003, no. 13, URL: http://www.mai.ru/science/trudy/eng/published.php?ID=34433
  24. Rybin V.V. Opisanie signalov i lineinykh nestatsionarnykh nepreryvnykh sistem upravleniya v bazisakh veivletov i ikh analiz v vychislitel’nykh sredakh (Description of signals and linear non-stationary continuous control systems in wavelet bases and their analysis in computing environments), Moscow, MAI, 2003, 96 p.

  25. Rybin V.V. Trudy MAI, 2009, no. 33, URL: http://www.mai.ru/science/trudy/eng/published.php?ID=7353

  26. Rybin V.V. Trudy MAI, 2010, no. 41, URL: http://www.mai.ru/science/trudy/eng/published.php?ID=23812

  27. Kashin B.S., Saakyan A.A. Ortogonal’nye ryady (Orthogonal functions), Moscow, Izd-vo AFTs, 1999, 560 p.

  28. Krotov I.G. Matematicheskie zametki, 1977, vol. 41, no. 1, pp. 215 — 229.

  29. Krotov I.G. Matematicheskie zametki, 1973, vol. 14, no. 2, pp. 185-195.

  30. Matveev V.A. Matematicheskie zametki, 1967, vol. 2, no. 3, pp. 267–278.

  31. Bochkarev S.I. Matematicheskie zametki, 1968, vol. 4, vol. 4, pp. 453-460.32.

  32. Vakarchuk S.B., Shchitov A.N. Izvestiya vuzov. Matematika, 2004, no. 10, pp. 82–85.

  33. Romanov V.A., Rybakov K.A. Trudy MAI, 2010, no. 39, URL: http://www.mai.ru/science/trudy/eng/published.php?ID=14816

  34. Rybakov K.A. Trudy MAI, 2003, no. 14, URL: http://www.mai.ru/science/trudy/eng/published.php?ID=34423

  35. D’yakonov V.P. Entsiklopediya Mathcad 2001i i Mathcad 11 (Encyclopedia of Mathcad 2001i and Mathcad 11), Moscow, SOLON-Press, 2004, 830 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход