Analysis of mobile robotic platforms used to batteries service of unmanned aerial vehicles in autonomous missions

Design, construction and manufacturing of flying vehicles


Аuthors

Ngo Q. T.1*, Solenaya O. Y.1**, Ronzhin A. L.2***

1. Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia
2. Saint-Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, 39, 14th line, Saint-Petersburg, 199178, Russia

*e-mail: quoctienbn@gmail.com
**e-mail: osolenaya@list.ru
***e-mail: ronzhin@iias.spb.su

Abstract

The problem of increasing the operating time of unmanned aerial vehicles in autonomous missions is considered. Approaches to charge or replace on-board batteries on the accompanying robotic platform are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicle on the platform and the way of servicing battery. The available prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint operation of the platform and unmanned aerial vehicle during the landing and maintenance of the battery. Autonomous landing of aerial vehicle in modern studies is considered not only on a fixed platform, but also on a mobile platform that moves in various environments. Landing unmanned aerial vehicle on a service charging station is realized with the help of various systems of navigation and analysis of the surrounding area. A battery-replacement system significantly reduces the preparation time of a multi-copter for a new flight and increases the total number of multicopters that are simultaneously in an autonomous mission. The charging system has a lower cost compared to the battery replacement system by minimizing the mechanical components of the structure. Modern means of navigation and technical vision ensure the landing of UAVs on the ground robotic platform can be performed with high accuracy in indoor environments. In outdoor application, taking into account the influence of weather conditions, the landing error is much higher. To communication the mobile platform to unmanned aerial vehicles, wireless means are mainly used to ensure their coordinated work during landing and take-off, and also to control several vehicles in the queue for charging. The purpose of this study is to develop a multifunctional mechanism for connecting a multi-copter to a ground-based robotic platform that performs the functions of their transportation and maintenance. Based on the results of the analysis, a classification of existing systems installed on robotic platforms for the maintenance of batteries is made. A further study will be devoted to the development of the requirements for the design of a multicopter maintenance system on a projected ground platform, taking into account its functional purpose, as well as the creation of software and hardware for the joint operation of multicopters and a platform.

Keywords:

unmanned aerial vehicles, UAV, multicopters, batteries, wireless charging, mobile platform, collaborative robots

References

  1. Barbasov V.K., Grechishchev A.V. Inzhenernye izyskaniya, 2014, no. 8, pp. 27-31.

  2. Knyaz’ V.A., Vishnyakov B.V., Vizil’ter Yu.V., Gorbatsevich V.S., Vygolov O.V. Trudy SPIIRAN, 2016, no. 45, C. 26-44.

  3. Novak K.V., Oleshko V.S., Starikova I.O., Toforov M.S. Trudy MAI, 2017, no. 94, available at: http://trudymai.ru/eng/published.php?ID=80936

  4. Makarenko S.I. Sistemy upravleniya, svyazi i bezopasnosti, 2016, no.2, pp. 73-132.

  5. Bogushevskaya V.A., Zayats O.V., Maslyakov Ya.N., Matsak I.S., Nikonov A.A., Savel’ev V.V., Sheptunov A.A. Trudy MAI, 2012, no. 51, available at: http://trudymai.ru/eng/published.php?ID=29047

  6. Pavlova N.V., Smeyukha A.V. Trudy MAI, 2016, no. 87. available at: http://trudymai.ru/eng/published.php?ID=69703

  7. Kurdi M. M. Sistemnyj analiz i prikladnaja informatika, 2017, no. 1, pp. 69 — 75.

  8. Jeong Y., Kweon I.S. Relative Pose Estimation for an Integrated UGV-UAV Robot System. ICIRA 2013, Part I, LNAI 8102, pp. 625–636.

  9. Muskardin T., Balmer G., Persson L., Wlach S., Laiacker M., Ollero A., Kondak K. A Novel Landing System to Increase Payload Capacity and Operational Availability of High Altitude Long Endurance UAVs. Journal of Intelligent & Robotic Systems, 2017.

  10. Nguyen V., Vu Q., Solenaya O., Ronzhin A. Analysis of main tasks of precision farming solved with the use of robotic means. 12th International Scientific-Technical Conference on Electromechanics and Robotics «Zavalishin’s Readings» — 2017, MATEC Web of Conferences, 2017, vol. 113, 02009.

  11. Vu D.K., Nguen V.V., Solenaya O.Ya., Ronzhin A.L. Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2017, no. 3(77), C. 13-19.

  12. Cocchioni F., Frontoni E., Ippoliti G., Longhi S., Mancini A., Zingaretti P. Visual Based Landing for an Unmanned Quadrotor, Journal of Intelligent & Robotic Systems, 2016, vol. 84, pp. 511–528.

  13. Daly J.M., Ma Y., Waslander S.L. Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays. Autonomous Robots, 2015, vol. 38, pp. 179–191.

  14. Kim J.W., Jung Y.D., Lee D.S., Shim D. H. Landing Control on a Mobile Platform for Multi-copters using an Omnidirectional Image Sensor. Journal of Intelligent & Robotic Systems, 2016, vol. 84, pp. 529–541.

  15. Sanchez-Lopez J. L., Pestana J., Saripalli S., Campoy P. An Approach Toward Visual Autonomous Ship Board Landing of a VTOL UAV. Journal of Intelligent & Robotic Systems, 2014, vol. 74, pp. 113–127.

  16. Ioannou S., Dalamagkidis K., Valavanis K.P., Stefanakos E.K. Improving Endurance and Range of a UGV with Gimballed Landing Platform for Launching Small Unmanned Helicopters. Journal of Intelligent & Robotic Systems, 2008, vol. 53, pp. 399–416.

  17. Kemper P.F., Suzuki K.A.O., Morrison J.R. UAV Consumable Replenishment: Design Concepts for Automated Service Stations. Journal of Intelligent & Robotic Systems, 2011, vol. 61, pp. 369–397.

  18. Suzuki K.A.O., Filho P.K., Morrison J.R. Automatic Battery Replacement System for UAVs: Analysis and Design. Journal of Intelligent & Robotic Systems, 2012, vol. 65, pp. 563–586.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход