Laser ignition of oxygen-kerosene fuel in rocket technique: from igniters to rocket engines

Design, construction and manufacturing of flying vehicles


Аuthors

Rebrov S. G.1*, Golubev V. A.2**, Golikov A. N.1***

1. ,
2. Keldysh Research Centre, 8, Onezhskaya str., Moscow, 125438, Russia

*e-mail: rebrov_sergey@mail.ru
**e-mail: golubev.va@mail.ru
***e-mail: andgolikov@mail.ru

Abstract

The article reviews the main results of research aimed at introducing laser ignition for rocket engines using oxygen-kerosene fuel. The purpose of the work was to determine the operational parameters of the laser ignition system and the ranges of the composition and fuel rate of the fuel mixture to ensure reliable ignition in igniters, rocket thrusters and sustainer rocket engines. The method of initiating a spark of optical breakdown in area with favorable ignition characteristics of the mixture was used as a method of ignition. The laser radiation was focused either in the volume of the mixture or near the metallic surface for that.

The tests covered a wide range of changes in the operating parameters of both combustion chambers and ignition systems. Laser ignition was successfully tested on chambers, starting from a small volume of several cm3 for igniters and low-thrust engines to the sustainer chamber of the engines of the first, second stages of the Soyuz launch vehicle with a volume of 65 dm3. The tests were carried out using mixtures of both a reducing composition at a value of oxidizer-to-fuel ratio to 0.1 and an oxidizing composition with a value of oxidizer-to-fuel ratio up to 11. Laser parameters were also ranged for output pulse energy from 1 mJ to 100 mJ and for pulse repetition frequency from 10 Hz to 100 Hz.

The complex of carried out works made it possible to develop the technology of laser ignition of oxygen-kerosene fuel with the determination of the necessary operating parameters of fuel mixtures and the ignition system itself with regard to rocket technology: igniters, thrusters, large combustion chambers for rocket engines with thrust up to 18 tf. Guidelines for introduction of laser ignition for large size rocket engine combustion chambers have been developed on the basis of experience gained. It was also shown the feasibility of laser ignition of large-sized oxygen-kerosene chambers using small-sized lasers mounted directly to the combustion chamber. These results allowed to propose a scheme of laser ignition system to replace the existing pyrotechnic for the first and second stages of the Soyuz launch vehicle, based on the use of micro lasers with fiber radiation delivered to them from a reusable stationary diode pumping station placed on the launch site.

Keywords:

laser ignition, optical breakdown, combustion chamber, rocket engine

References

  1. Hasegawa K., Kusaka K., Kumakawa A., Sato M., Tadano M. Laser ignition of GOX/GH2 and GOX/GCH4 propellants, AIAA 2003-4906, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 20-23 July 2003, Huntsville, Alabama

  2. Trinh H., Early J.W., Thomas M.E. Dual-Laser-Pulse Ignition. Marshall Space Flight Center. NASA Tech Briefs, 2006.

  3. Lacaze G., Cuenot B., Poinsot T., Oschwald M. Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration, Combustion and Flame, 156 (2009), pp.1166 — 1180.

  4. Manfletti C., Oschwald M. and Sender J., Institute of Space Propulsion, German Aerospace Center (DLR), Lampoldshausen, Germany. Theoretical and Experimental Discourse on Laser Ignition in Liquid Rocket Engines. 2009.

  5. Börner M. Laser ignition of a multi-injector liquid rocket engine, SPC2014-2969567, Space Propulsion Conference 2014, 19th to 22nd May, 2014, Cologne.

  6. Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Trudy MAI, 2012, no. 59, available at: http://trudymai.ru/eng/published.php?ID=34989

  7. Dobrovol’skii M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya (Liquid rocket engines. Basics of Design), Moscow, BMSTU im. N.E. Baumana, 2016, 461 p.

  8. Arhipov A.B., Belyaev V.S., Golikov A.N., Guterman V.Yu., Zhigarev L.F., Ivanov A.V., Motalin G.A., Pletnev N.V., Ponomarev N.B., Rachuk V.S., Rebrov S.G., Yuldashev EH.M. Patent RU 2326263, 14.05.2007.

  9. Ivanov A.V., Rebrov S.G., Golikov A.N., Guterman V.YU. Aviakosmicheskaya tekhnika i tekhnologiya, 2008, no 2, pp. 47-54.

  10. Rebrov S.G., Golikov A.N., Golubev V.A., SHestakov A.V., Romanyuk V.N. Trudy MAI, 2012, no 57, available at: http://trudymai.ru/eng/published.php?ID=31098

  11. Rebrov S.G., Golikov A.N., Golubev V.A. Aviakosmicheskaya tekhnika i tekhnologiya, 2009, no 2, pp. 18-23.

  12. Golikov A.N., Golubev V.A., Rebrov S.G., Kosmonavtika i raketostroenie, 2010, no. 3(60), pp. 92-100.

  13. Rebrov S.G., Golikov A.N., Golubev V.A., Kochanov A.V., Klimenko A.G. Patent RU 2400644, 09.06.2009.

  14. Rebrov S.G., Golikov A.N., Golubev V.A. Trudy MAI, 2012, no. 53, available at: http://trudymai.ru/eng/published.php?ID=29491

  15. Rebrov S.G., Golubev V.A., Golikov A.N. Patent RU 2400644, 27.11.2012.

  16. Belov E.A., Golikov A.N., Golubev V.A., Rebrov S.G., Dubovik D.I., Ivanov N.G., Klyueva O.G., Levochkin P.S., Romasenko E.N. Trudy NPO Energomash im. akademika V.P. Glushko, 2013, no. 30, pp. 120-134.

  17. Hvanov V.K., Lyovochkin P.S., Romasenko E.N., Ivanov N.G., Fyodorov V.V., Rebrov S.G., Golubev V.A., Belov E.A., Dubovik D.I., Klyueva O.G. Trudy NPO Energomash im. akademika V.P. Glushko, 2012, no. 29, pp. 198-210.

  18. Chvanov V.K., Ganin I.A., Ivanov N.G., Lyovochkin P.S., Romasenko E.N., Surkov B.A. Trudy NPO Energomash im. akademika V.P. Glushko, 2015, no. 32, pp. 113-133.

  19. Rebrov S.G., Golubev V.A. Izvestiya RAN, Energetika, 2015, no. 2, pp. 131-137.

  20. Novosti GNC FGUP «Centr Keldysha», avgust 2015, available at: http://kerc.msk.ru/новости/2015-2/архив-2015-полугодие-ii/август-2015/#prettyPhoto


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход