Development trends of modern aircraft onboard hydraulic systems

Design, construction and manufacturing of flying vehicles


Аuthors

Dolgushev V. G.1*, Ionov V. A.2**, Kun N. V.3***, Matveenko A. M.1****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Company «KEH eKommerc», 7, Lesnaya str., Moscow, 125047, Russia
3. Moscow branch of the unmanned direction "Kronstadt", 18, Avenue Andropova, Housing 9, Moscow, 115432, Russia

*e-mail: gidropulsar@yandex.ru
**e-mail: vawsan@mail.ru
***e-mail: kunnata@yandex.ru
****e-mail: kaf103@mai.ru

Abstract

Resiliency is essential for operation of an aircraft during its lifetime. In modern aircraft hydraulic system a specified level of fail-safety in the design process is ensured by the initial selection of the structure and parameters of the system, which cannot be changed during the flight.

The fail-safety can be improved by increasing various safety factors and redundancy of elements. Nevertheless, in its turn, it leads to the system weight increase. However, the increase of fail-safety without weight increase is possible through adjustment of internal parameters by changing operation modes (e.g., unloading in cruising flight and the crossing of the settings at high loads or failure in the system).

The decisive factor is the smaller weight of the system, giving the opportunity to increase the combat effectiveness of the aircraft either due to the smaller mass and therefore greater maneuverability, or to the larger mass of ammunition.

For large passenger aircraft, using forced modes to compensate for failures of pipelines, implementation of titanium alloys and high rated pressure level will allow create a hydraulic system with a significantly smaller mass.

A mixed system, incorporating centralized hydraulic system and stand-alone drives is expedient to be applied on the military-transport aircraft, which due to the extra mass is possible to achieve high survivability.

References

  1. Аkopov M.G., Ruzhitskaya V.V., Evseev А.S. et al. Sistemy oborudovaniya letatel’nykh apparatov (Aircraft equipment systems), Moscow, Mashinostroenie, 2005, 520 p.

  2. Bibikov S.Yu., Dolgov O.S. et al. Komponovka samoleta (Aircraft layout), Moscow, Izd-vo MАI, 2012, 294 p.

  3. Аkopov M.G., Volkov А.А., Dolgushev V.G. et al. Metody proektirovaniya perspektivnykh sistem silovogo privoda LА (Design methods of aircraft prospective actuating systems), Moscow, Izd-vo MАI PRINT, 2010, 312 p.

  4. Matveenko А.M. Sistemy oborudovaniya letatel’nykh apparatov (Aircraft equipment systems), Moscow, Mashinostroenie, 2005, 558 p.

  5. Konstantinov S.V., Red’ko P.G. i Ermakov S.А. Elektrogidravlicheskie rulevye privody (Electro-hydraulic steering actuators), Moscow, Yanus-K, 2006, 314 p.

  6. Matveenko А.M. Metody proektirovaniya ehnergosistem silovogo privoda letatel’nykh apparatov (Design methods of aircraft power actuating systems), Moscow, Izd-vo MАI PRINT, 2010, 308 p.

  7. Smagin D.I., Pugachev Ju.N., Dolgov O.S. Trudy MAI, 2011, no. 44, available at: http://www.mai.ru/science/eng/trudy/published.php?ID=24969


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход