Evaluation of high-frequency ion thruster parameters

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Gordeev S. V.1*, Kanev S. V.2**, Suvorov M. O.2***, Khartov S. A.****

1. Research Institute of Applied Mechanics and Electrodynamics of Moscow Aviation Institute (RIAME MAI), Moscow, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: svyatoslavgordeev@mail.ru
**e-mail: k208mai@mail.ru
***e-mail: maxwell2005@yandex.ru
****e-mail: skhartov@ya.ru

Abstract

There is an increasing need for low Earth orbiting satellites for various purposes. Such satellites are cheaper to put into orbit (for altitudes 160−300 km), and can ensure high-resolution for Earth observation. However, lowering orbit altitude means that atmosphere gases concentration and the aerodynamic drag force increase causing decrease in the spacecraft orbit lifetime. Electric propulsion thrusters could be used to counteract the aerodynamic drag. For example, the European Space Agency spacecraft GOCE operating in a near-circular orbit with altitudes of 250−280 km for more than four years used the ion thruster T5 of QinetiQ Company for aerodynamic drag compensation. This thruster used onboard xenon as propellant. When the whole amount of propellant was consumed, the vehicle began lowering and burnt in atmosphere. Application of atmosphere gases as propellant may substantially increase lifetime of low orbit spacecraft.

This work focuses on the operation of high-frequency ion thrusters operating with atmosphere gases as propellant. Such thrusters may be used to counteract the aerodynamic drag of low Earth orbit spacecraft. Work processes in the ionization chamber of ion thruster were modeled. A mixture of atomic and molecular nitrogen and oxygen was considered as a propellant. During ionization each of these gases partially transforms in singly charged ions. The thruster characteristics, namely its thrust and consumed power were analyzed and compared to characteristics of the spacecraft from the viewpoint of its aerodynamic drag and solar panels power.

The results of this work demonstrate the possibility of creation a low orbit spacecraft with high-frequency ion thruster operating with atmosphere gases as propellant to counteract the aerodynamic drag.

Keywords:

low Earth orbit spacecraft, aerodynamic braking, high-frequency ion thruster

References

  1. Corbett M.H., Edwards C.H. Thrust Control Algorithms for the GOCE Ion Propulsion Assembly, 30th International Electric Propulsion Conference, Florence, Italy, September 17-20, IEPC-2007-210.

  2. Nishiyama К. Air Breathing Ion Engine Concept, 54th International Astronautical Congress, Sept.– Oct. 2003, IAC-03-S4-02.

  3. Hruby V., Pote B., Brogan T., et.al. Air Breathing Electrically Powered Hall Effect Thruster, Patent US 6,834,492 B2, Busek Company, Inc., Natick MA, USA, Dec. 2004

  4. Kanev S.V., Petukhov V.G., Popov G.A., Khartov S.A. Izvestiya. Vuzov. Aviatsionnaya tekhnika. 2015, no. 3, pp. 35-40.

  5. Bondarev E.N., Dubasov V.T., Ryzhov Ju.A., Svirshhevskij S.B., Semechnikov N.V. Aerogidromekhanika (Aero and hydromechanics), Moscow, Mashinostroyeniye, 1993, 608 p.

  6. Kanev S.V., Kozhevnikov V.V., Khartov S.A. Izvestiya RAN. Energetika, 2017, no. 3. pp. 21-30.

  7. Belousov A.P., Mel’nikov A.V., Khartov S.A. Trudy MAI, 2017, no. 94, available at: http://trudymai.ru/eng/published.php?ID=80974

  8. Godyak V.A., Piejak R.B., Alexandrovich B.M. Plasma Sources Science Technology, 2002, vol. 11, pp. 525-543.

  9. Yerofeyev A.I., Nikiforov A.P., Popov G.A., Suvorov M.O., Syrin S.A., Khartov S.A. Vestnik NPO im. S.A. Lavochkina, 2016, no. 3, pp. 104-110.

  10. Groh K.H. and Loeb H.W. State-of-the-Art of Radio-Frequency Ion Thrusters, Journal of Propulsion and Power, 1991, vol. 7, no. 4, pp. 573-579.

  11. Kanev S.V., Latyshev L.A., Nigmatzyanov V.V., Khartov S.A. Trudy MAI, 2012, no 52, available at: https://www.mai.ru/science/eng/trudy/published.php?ID=29483

  12. Kozhevnikov V.V., Khartov S.A. XLI Akademicheskie chteniya po kosmonavtike. Tezisy dokladov, Moscow, 24–27 January 2017, pp. 76.

  13. Aleksandrov A.F., Vavilin K.V., Kral’kina E.A., Neklyudova P.A., Pavlov V.B. Prikladnaya fizika, 2013, no. 5, pp. 34-37.

  14. Aldonin F.I., Akhmetzhanov R.V. Trudy MAI, 2015, no 81, available at: https://www.mai.ru/science/eng/trudy/published.php?ID=57827

  15. Abragyan V.K., Akhmetzhanov R.V., Lob KH.V., Obukhov V.A., Cherkasova M.V. Trudy MAI, 2013, № 71, available at: http://trudymai.ru/eng/published.php?ID=46702.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход