Experimental data on flow in gas ejector for turbulence model verification

Fluid, gas and plasma mechanics


Larina E. V.*, Tsipenko A. V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: larinaelenav@gmail.com
**e-mail: tsipenko_av@mail.ru


Gas ejector is a convenient device for verifying mathematical models, which is based on comparison with experimental results. Advantages of flow in an ejector for a numerical experiment:

  • axial symmetry of the structure and gas feeding allows compare 1D, 2D and 3D models (mathematical models in one-, two- and three-dimensional coordinate systems) with the experiment;

  • rigid walls with known parameters;

  • a simple specification of the initial parameters of the field of gas and parameters of gas at the output;

  • various types of canonical flows in one device in different combinations (supersonic underexpanded and overexpanded jet, subsonic jet, shock reflection from the wall, supersonic and subsonic boundary layer, positive and negative pressure gradient along the wall, stationary and nonstationary separation);

  • a convenient set of experimental data for comparison with simulation results for local and integral parameters.

The authors considered a single-stage axisymmetric ejector of the classical single-nozzle design. Compressed nitrogen was employed from the balloon system with a stagnation temperature of 300 K. The article presents all necessary geometry, inlet pressure in the ejection nozzle, and the pressure sensor positions. The sensors scanning slot is 0.001 s.

Data collection system ensured the time interval of 0,001 s between the two sensor readings. The sensors error was less than 35 Pa (0.005 psi). The results of various launches were not being averaged.

One-dimensional theory comparison with the experimental data reveals that the 1D theory gives a lower (optimistic) estimation of the start-up pressure. The experiments demonstrated also that minimum level of the ejector high-frequency noise corresponds to the minimum stable pressure in the vacuum chamber.

A numerical simulation of the ejector operation for several variants of the ejecting gas pressure employing the authors’ original code based on I.Kryukov and I.Ivanov code and Godunov’s method was carried out. The vacuum chamber pressure fluctuation and the shock-train separation point displacement were obtained. A numerical experiment yields acceptable average flow parameters, but absolutely unacceptable frequency characteristics.

The presented experimental data are quite complete and suitable for turbulence model verification.

The work was supported by the RFBR grants No. 16-38-60185, No. 16-01-00444a.


gas ejector, vacuum pump, experimental data, gas jet, shock-train, separation point boundary layer, numerical simulation, Godunov's method


  1. Balasubramanyam M. S., Chen C.P. Investigation of Compressibility Effect for Aeropropulsive Shear Flows, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 10 – 13, Tucson, Arizona, AIAA 2005-3712.

  2. Srisha M.V.Rao, Jagadeesh G. Novel supersonic nozzles for mixing enhancement in supersonic ejectors, Applied Thermal Engineering, 2014, no. 71, pp. 62-71.

  3. Kathleen M. Tacina, Rene Fernandez, John W. Slater, Stefanie M. Moody. An Analysis of Pitot and Static Pressure Measurements in an Unsteady Supersonic Flow, 34th AIAA Fluid Dynamics Conference, June 28 – July 1 Portland, Oregon, AIAA Paper 2004 – 2719.

  4. Yapıcı R., Ersoy H.K., Aktoprakoglu A., Halkacı H.S., Yigitb O. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio, International Journal of Refrigeration, 2008, no. 31, pp. 1183 – 1189.

  5. Tony Utomo, Myongkuk Ji, Pilhwan Kim, Hyomin Jeong, Hanshik Chung. CFD Analysis on the Influence of Converging Duct Angle on the Steam Ejector Performance, EngOpt 2008. International Conference on Engineering Optimization Rio de Janeiro, Brazil, 01 – 05 June 2008. Printed and CD ROM Proceedings: ISBN 978-85-7650-152-7. http://engopt.org/08/nukleo/pdfs/0559_cfd_analysis_engopt.pdf

  6. Huang B.J., Chang J.M., Wang C.P., Petrenko V.A. A 1-D analysis of ejector performance, International Journal of Refrigeration, 1999, no. 22, pp. 354 – 364.

  7. Huang B.J., Chang J.M. Empirical correlation for ejector design, International Journal of Refrigeration, 1999, no.22, pp. 379 – 388.

  8. Woo Woo Jong Hong’ and Charles A. Garris, Jr. Non-Steady Flow Ejector Technology Applied To Refrigeration With Environmental Benefits, 38th Aerospace Sciences Meeting and Exhibit, AIAA-2000-0726. URL: https://arc.aiaa.org/doi/abs/10.2514/6.2000-726

  9. Kathleen M. Tacina, Rene Fernandez, John W. Slater, Stefanie M. Moody. An Analysis of Pitot and Static Pressure Measurements in an Unsteady Supersonic Flow, 34th AIAA Fluid Dynamics Conference, June 28 – July 1 Portland, Oregon, AIAA Paper, 2004-2719.

  10. Imran H. Implementation of a Supersonic Ejector for Capturing Dry-Gas Seal Vent Gases, Presented at the 17th Symposium on Industrial Application of Gas Turbines of Gas Turbines (IAGT), Banff, Alberta, Canada – October 2007, Paper No: 07-IAGT, 1.5.

  11. Rusly E., Aye Lu, Charters W.W.S., Ooi A. CFD analysis of ejector in a combined ejector cooling system, International Journal of Refrigeration, 2005, no. 28, pp. 1092 – 1101.

  12. Vasil’ev Ju.N. Lopatochnye mashiny i struinye apparaty, 1967, no. 2, pp. 171 – 235.

  13. Sychenkov V.A., Panchenko V.I., Khaliulin R.R. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2014, no. 2, pp. 24 – 28.

  14. Milionshchikov M.D., Ryabinkov G.M. Gazovye ezhektory bol’shikh skorostei. Sbornik rabot po issledovaniyu sverkhzvukovykh gazovykh ezhektorov (Gas ejectors of high velocities. The studies of supersonic gas ejectors publication), Moscow, TsAGI, 1961, pp. 5 – 32.

  15. Tsegel’skii V.G. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2012, no. 2, pp. 46 – 71.

  16. Panchenko V.I., Bikbulatov R.R. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2012, no. 1, pp. 36 – 39.

  17. Abramovich G.N. Prikladnaya gazovaya dinamika (Applied gas dunamics), Moscow, Nauka, 1991, Ch. 1, 597 p.

  18. Arkadov Yu.K. Novye gazovye ezhektory i ezhektsionnye protsessy (New gas ejectors and ejecting processes), Moscow, Izdatel’stvo fiziko-matematicheskoi literatury, 2001, 336 p.

  19. Tseitlin A.B. Parostruinye vakuumnye nasosy (Steam-jet air pumps), Moscow-Leningrad, Energiya, 1965, 399 p.

  20. Dr. Rudolf Hermann. Sverkhzvukovye vkhodnye diffuzory (Supersonic inlet diffusers and introduction to internal aerodynamics), Moscow, FIZMATGIZ, 1960, 290 p.

  21. Tsegel’skii V.G. Struinye apparaty (Jet devices), Moscow, Izdatel’stvo MGTU im. N.E.Baumana, 2017, 573 p.

  22. Shushin N.A. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 1999, no. 3, pp. 47 – 50.

  23. Shushin N.A. Uchenye zapiski TsAGI, 2010, vol. XLI, no. 3, pp. 69 – 81.

  24. Pis’mennyi V.L. Trudy MAI, 2003, no. 12, available at: http://trudymai.ru/eng/published.php?ID=34456

  25. Eksperimental’nye dannye – Data XLS files, available at: http://files.mai.ru/site/unit/fpmf/801/docs/papers/001_data.zip

  26. Kartovitskiy L., Lee J.H., Tsipenko A. Numerical and Experimental Investigation of Non-Stationary Processes in Supersonic Gas Ejector, 29th Congress (29th Congress of the International Council of the Aeronautical Sciences (ICAS), ICAS 2014, ISBN CD: 3-932182-80-4.

  27. Glushko G.S., Ivanov I.E., Kryukov I.A. Matematicheskoe modelirovanie, 2009, vol. 21, no. 12, pp. 103 – 121.

  28. Ivanov I.E., Kryukov I.A. Matematicheskoe modelirovanie, 1996, vol. 8, no. 6, pp. 47 – 55.

  29. Ivanov I.E., Kryukov I.A. Vestnik Moskovskogo aviatsiionnogo instituta, 2009, vol. 16, no. 7, pp. 23 – 30.

  30. Ivanov I.E., Kryukov I.A. Materialy IX Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh, NPNJ-2012, 23-25 maya 2012, Alushta, pp. 39 – 42.

  31. Ivanov I.E. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4 (3), pp. 801 – 803.

  32. Addy A., Dutton J., Mikkelensen C. Supersonic EjectoreDiffuser Theory and Experiment, University of Illinois, Urbana, 1981, available at: https://www.researchgate.net/publication/235114679_Supersonic_Ejector-Diffuser_Theory_and_Experiments

  33. Sistema modelirovaniya dvizheniya zhidkosti i gaza FlowVision, available at: https://tesis.com.ru/infocenter/downloads/flowvision/fv_cert_techcond.pdf

  34. Wilcox D.C. Turbulence modeling for CFD, DCW Industries, Inc., 1994. 460 p.

  35. Bardina J.E., Huang P.G. and Coakley T.J. Turbulence Modeling Validation, Testing and Development, NASA TM-110446, 1997, 100 p.

  36. Borisov V.E., Davydov A.A., Kudrjashov I.Ju., Luckij A.E., Men’shov I.S. Matematicheskoe modelirovanie, 2014, vol. 26, no. 10, pp. 64 – 78.


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI