General technique for computing the test bed variant of a space power unit in transient operation modes

Thermal engines, electric propulsion and power plants for flying vehicles


Chernakov V. V.1, Iksanov H. S.2, Myakochin A. S.3*, Nazarenko I. P.1

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Keldysh Research Centre, 8, Onezhskaya str., Moscow, 125438, Russia
3. ,



The subject of this work is the power unit of the space nuclear power plant in the test bed version. The purpose of the work was to develop a general methodology for calculating the power unit of the test bed version of a nuclear power plant for space applications in transient operation modes. An additional task was to determine the minimum set of independent variables, allowing fully characterize the operation of the power plant in non-stationary modes.

The computation technique is based on a unifying physical and mathematical model of the power unit. The physico-mathematical model is being built on a modular principle and includes the models of all the components of the power unit along the energy conversion contour. The article describes also the algorithm and the scheme for calculating the parameters of a closed gas-turbine circuit in a nonstationary formulation. The technique and algorithms are described on the example of a test bed version of a space nuclear power installation with a resistor heater as a heat source.

This technique can be used to perform calculations while the design, development and evaluation of space nuclear power units efficiency, as well as in modeling and developing control algorithms for the energy conversion loop in the modes of the source thermal power alteration. The technique can also be changed and supplemented depending on the layout and design of the particular power unit, the characteristics and specifics of its constituent parts, the type of heat exchangers, heat source, etc.

The main feature of the work is that this technique allows compute all most important parameters of the energy conversion circuit of a space nuclear power unit exactly at non-stationary operating modes. This is necessary at the start-up phase and while switching from one mode to another for development of control algorithms for the entire spacecraft.


mathematical modeling, gas-turbine loop, Brayton cycle, space nuclear power plant


  1. Lee S. Mason. A Power Conversion Concept for the Jupiter Icy Moons Orbiter, First, AIAA/ASME/IEEE International Energy Conversion Engineering Conference, Portsmouth, Virginia, August 17–21, 2003, pp. 6 – 15.

  2. Jansen F., Bauer W., Masson F., Ruault J.M.,Worms J.C., Detsis E., Lassoudiere F., Granjon R., Gaia E., Ferraris S., Tosi M.C., Koroteev A.S., Semenkin A.V., Solodukhin A.E., Tinsley T., Hodgson Z., Guimarães L.N.F. Step-by-step Realization of the International Nuclear Power and Propulsion System (INPPS) mission, Proceedings Of The International Astronautical Congress, IAC, Jerusalem, Israel, 2015, pp. 7716 – 7724.

  3. Oriol S., Masson F., Tinsley T., Stainsby R., Hodgson Z., Detsis E., Worms J.C., Koroteev A.S., Semenkin A.V., Solodukhin A.E., Jansen F., Bauer W., Bauer W., Ferraris S., Tosi M.C., Muszynski M., Lassoudiere F. DEMOCRITOS: development logic for a demonstrator preparing nuclear electric spacecraft, Nuclear and Emerging Technologies for Space (NETS 2016), 2016, pp. 50 – 60.

  4. Lamartine Guimarães, Guilherme Borges Ribeiro, Jamil Alves do Nascimento, Élvis Falcão de Araújo, Francisco Antônio Braz Filho, Artur Flávio Diasand Valeria S.F.O. Leite. TERRA Project: a Brazilian View for Nuclear Energy Application to Space Exploration, NETS 2017, Conference Paper, February 2017,

  5. Koroteev A.C., Akimov B.H, Popov C.A. Polet, 2011, no. 4, pp. 93 – 99.

  6. Akimov V.N., Koroteev A.S. Sovremennaja nauka, 2011, no. 2 (7), pp. 77 – 85.

  7. Koroteev A.S. Vestnik Rossijskoj akademii nauk, 2012, vol. 82, no. 4, pp. 317 – 322.

  8. Koroteev A.S., Oshev Ju.A., Popov S.A., Karevskij A.V., Soloduhin A.E., Zaharenkov L.Je., Semjonkin A.V. Izvestija Rossijskoj akademii nauk. Jenergetika, 2015, no. 5, pp. 45 – 59.

  9. Kuvshinova E.Ju. Trudy MAI, 2013, no. 68, available at:

  10. Rybin V.V. Trudy MAI, 2012, no. 50, available at:

  11. Volchkov G.V., Vystavkin A.G. Trudy MAI, 2011, no. 45, available at:

  12. Ljob H.V., Mogulkin A.I., Obuhov V.A., Petuhov V.G. Trudy MAI, 2013, no. 70, available at:

  13. Polous M.A., Alekseev P.A., Ehlakov I.A. Trudy MAI, 2013, no. 68, available at:

  14. Konstantinov M.S., Ljob H.V., Petuhov V.G., Popov G.A. Trudy MAI, 2011, no. 42, available at:

  15. Akimov V.N., Arhangel’skij N.I., Eliseev I.O., Koroteev A.S., Kuvshinova E.Ju. Polet, 2015, no. 7, pp. 3 – 9.

  16. Barabanov A.A., Pichkhadze K.M., Sysoev V.K., Papchenko B.P., Rebrov S.G., Semenkin A.V., Yanchur S.V. Proposals For The Construction Of Space Systems Based On Small Spacecraft And A Transport And Power Module With A Nuclear Power Plant, Solar System Research, 2016, no. 7, pp. 471 – 476.

  17. Andrianov D.I., Zaharenkov L.Je., Karevskij A.V., Popov A.V., Popov S.A., Semjonkin A.V., Soloduhin A.E., Terehov D.N., Shtonda S.Ju. Inzhenernyj zhurnal: nauka i innovacii, 2016, no. 7(55), p. 9. DOI 10.18698/2308-6033-2016-07-1518

  18. Favorskij O.N, Fishgojt V.V., Jantovskij E.I. Osnovy teorii kosmicheskih jelektroreaktivnyh dvigatel’nyh ustanovok (Fundamentals of the theory of space electroreactive propulsion systems), Moscow, Vysshaja shkola, 1978, 384 p.

  19. Chernakov V.V., Iksanov Kh.S. XLI Akademicheskie chteniya po kosmonavtike. Sbornik tezisov, Moscow, 24 – 27 yanvarya 2017, MGTU im. N.E. Baumana, 565 p.

  20. Iksanov Kh.S., Tsvetkova A.I., Chernakov V.V. Svidetel’stvo o gosudarstvennoi registratsii programm dlya EVM “Programma nestatsionarnogo rascheta parametrov v teploobmennykh apparatakh plastinchatogo tipa”, № 2015661504, 29.10.2015. (Certificate of state registration of computer programs “Program for the non-stationary calculation of parameters in plate-type heat exchangers”, no. 2015661504, 29.10. 2015)

  21. Chernakov V.V., Iksanov Kh.S. Teplovye protsessy v tekhnike, 2017, vol. 9, no. 3, pp. 98 – 105.

  22. Tsoi M.M., Katunin N.V. VIII Mezhdunarodnaya konferentsiya po matematicheskomu modelirovaniyu. Tezisy dokladov. Yakutsk, 2017, 220 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI