Cable towing of a space debris object with a cavity filled with liquid

Theoretical mechanics


Aslanov V. S.*, Yudintsev V. V.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia



Space debris active transportation employing a space tug with a tether link is one of the promising techniques of near-Earth space cleaning-up. When developing such transportation means, it is necessary to account for the specifics of space debris objects, particularly, the presence of elastic structure elements, and fuel remnants. There are two types of the space debris, namely, overaged spacecraft and orbital stages of rocket carriers. On one hand, orbital stages are simpler for transportation compared to spacecraft, since they do not contain large attached elastic elements, such as antennas or solar batteries. On the other hand, orbital stages might contain fuel remnants affecting the motion of space debris and the transportation system at large. The presented work is devoted to this phenomenon. The purpose of this work is development of a simple mathematical model of a transportation system with account for the fuel remnants onboard the space debris object of a space station type.

The article studies the effect of fuel remnants on the safety of withdrawal the space debris with fuel remnants. The authors obtained equations of motion in central gravitational field of a mechanical system, consisting of a space tug, space debris object and a tether. The space debris object is considered as solid body, containing a moving mass of liquid. The liquid fluctuating in the tank is represented as an equivalent pendulum system. Stationary solutions of the equations of movement were found, and linearized equations in the neighborhood of stable stationary solutions were constructed. The results of numerical modeling, demonstrating the closeness of analytical solutions of the linearized equations and numerical solutions of the initial equations of motion are presented.

The obtained linearized equations can be useful for determining transportation system parameters, ensuring safe withdrawal of the space debris.


space debris, tether, space tug, cavity with fuel, oscillations


  1. Dafu X., Xianren K. Tether modeling study on electro-dynamic tether deorbiting system, Acta Aeronautica et Astronautica Sinica, 2008, vol. 5, pp. 18.

  2. Forward R.L., Hoyt R.P., Uphoff C.W. Terminator Tether: A spacecraft deorbit device, Journal of spacecraft and rockets, 2000, vol. 37, no. 2, pp. 187 – 196.

  3. Kitamura S., Hayakawa Y., Kawamoto S. A reorbiter for large GEO debris objects using ion beam irradiation, Acta Astronautica, 2014, vol. 94, no. 2, pp. 725 – 735.

  4. Avdeev A.V., Metelnikov A.A. Trudy MAI, 2016, no. 89, available at:

  5. Ashurbeili I.R., Lagovier A.I., Ignatiev A.B., Nazarenko A.V. Trudy MAI, 2011, no. 43, available at:

  6. Oleinikov I.I., Aksenov O.Yu., Pavlov V.P. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 2, pp. 29 – 34.

  7. Avdeev A.V. Trudy MAI, 2012, no. 1, available at:

  8. Jasper L.E.Z., Seubert C.R., Schaub H., Trushkyakov V., Yutkin E. Tethered Tug for Large Low Earth Orbit Debris Removal, In: AAS/AIAA Spaceflight Mechanics Meeting, January 29—February 2, Charleston, South Carolina, AAS 12-252 (2012).

  9. Jasper L., Schaub H. Input shaped large thrust maneuver with a tethered debris object, Acta Astronautica, 2014, vol. 96, pp. 128 – 137.

  10. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 90, available at:

  11. Aslanov V.S., Pikalov R.S. Trudy MAI, 2017, no. 92, available at:

  12. Kupreev S.A. Trudy MAI, 2015, no. 80, available at:

  13. Kupreev S.A. Trudy MAI, 2016, no. 88, available at:

  14. Bonnal C., Ruault J.-M., Desjean M.-C. Active debris removal: Recent progress and current trends, Acta Astronautica, 2013, vol. 85, pp. 51 – 60.

  15. Aslanov V.S., Yudintsev V.V. Behaviour of tethered debris with flexible appendages, Acta Astronautica, 2014, vol. 104, no. 1, pp. 91 – 98.

  16. Aslanov V.S., Yudintsev V.V. Dynamics, Analytical Solutions and Choice of Parameters for Towed Space Debris with Flexible Appendages, Advances in Space Research, 2014, vol. 55, no. 2, pp. 660 – 667.

  17. Reyhanoglu M., Hervas J.R. Nonlinear dynamics and control of space vehicles with multiple fuel slosh modes, Control Engineering Practice, 2012, vol. 20, pp. 912 – 918.

  18. Yue B.-Z. Study on the Chaotic Dynamics in Attitude Maneuver of Liquid-Filled Flexible Spacecraft, AIAA Journal, 2011, vol. 49, no. 10, pp. 2090 – 2099.

  19. Hervas J.R., Reyhanoglu M. Thrust-vector control of a three-axis stabilized upper-stage rocket with fuel slosh dynamics, Acta Astronautica, 2014, vol. 98, no. 14, pp. 120 – 127.

  20. Peterson L.D., Crawley E.F., Hansman R.J. Nonlinear fluid slosh coupled to the dynamics of a spacecraft, AIAA Journal, 1989, vol. 27, no. 9, pp. 1230 – 1240.

  21. Reyhanoglu M. Modeling and control of space vehicles with fuel slosh dynamics, Advances in Spacecraft Technologies, 2010, vol. 3, pp. 549 – 562.

  22. Abramson H.N. The dynamic behaviour of liquids in moving containers. National Aeronautics and Space Administration, Washington, DC, SP-106, 1966.

  23. Ibrahim R. Liquid sloshing dynamics: theory and applications, Cambridge University Press, 2005, 970 p.

  24. Ohocimskij D.E. Kosmicheskie issledovaniya, 1964, vol. 2, no. 6, pp. 817 – 842.

  25. Beleckij V.V. Dvizhenie iskusstvennogo sputnika Zemli otnositel’no tsentra mass (Artificial satellite movement around the center of mass), Moscow, Nauka, 1965, 416 p.

  26. Taylor J.R. Classical mechanics. University Science Books, 2005, 808 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI