Studying specifics of MAC algorithms realization in mobile self-organizing communications networks

Systems, networks and telecommunication devices


Bakhtin A. A.1*, Volkov A. S.2**, Baskakov A. E.1***

1. National Research University of Electronic Technology, 1, sq. Shokina, Moscow, Zelenograd, 124498, Russia
2. National Research University of Electronic Technology "MIET", 1, Shokin Square, Zelenograd, Moscow, 124498, Russia



With account for the trends of mobile self-organizing communications networks development, the number of technologies and communication systems employing the principle of infrastructure building without the use base station will increase in subsequent years. Thus, more and more tasks, which should be solved on a data link layer of the system developed, are being revealed. A base station absence in the network topology generates the tasks of organizing the message delivery route selecting, which is especially important in mobile self-organizing communications networks. The concept of mobility itself, i. e. nodes’ permanent spatial motion imposes additional restrictions on the communication system. Thus, the problem of transmitting the service and information frames in conditions of a non-constant connection between nodes occurs. Currently, one of the most widely used algorithms for the environment accessing is the CSMA\CA algorithm. Stations and subscribers of the 802.11 network, that is, Wi-Fi networks are operating on its base. The algorithm is based on the principle of transferring the service frames of the RTS-CTS-DATA-ACK format. Using this algorithm allows solving the problems of a hidden node. The MACA algorithm lies at the heart of the implementation of CSMA\CA and is distinguished by the use of RTS-CTS-DATA service frames, without delivery confirmation. These algorithms have disadvantages, such as a large number of service frames in the communication channel and a possible non-delivery of the service frame with a changing network topology.

To solve these problems, an algorithm MMAC was developed. Application of this algorithm implies the presence of two or more communication channels by each node: separate communication channels for the transmission of service frames and for the transmission of data frames. Since this imposes additional costs on the implementation of the second channel, the algorithm has been modified. The LCM MAC algorithm employs the principle of separate transmission of service and information frames in different time slots.

A study of their efficiency was performed by simulating these algorithms in the software environment of Network Simulator 3. Analysis of simulation results revealed that the access algorithms for the MMAC and LCM MAC algorithms demonstrate the best packet delivery rate and network bandwidth compared to the MOCA and CSMA\CA algorithms (at the average by 20% and 500 bit / s, respectively). Based on the performed work, it was revealed that the actual task of research and development of a mobile self-organizing communication system, namely its data link layer, is the solution of a number of tasks:

  • overflow of service frames;

  • significant decrease in network bandwidth with increasing number of nodes;

  • possible non-delivery of packets with increasing number of nodes;

  • impossibility of simultaneous listening of service frames and transmission of information frames without involvement of additional channels;

  • unused information from other layers of the OSI model.


MAC, access algorithm, Ad-Hoc


  1. Tariq S. Mac algorithms in wireless networks, Applications, Issues and Comparisons, Umea University, Sweden, 2005, pp. 1 – 61.

  2. Wu S. L. et al. A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks, Proceedings of International Symposium on Parallel Architectures, Algorithms and Networks, I-SPAN 2000, 2000, pp. 232 – 237.

  3. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4: Further Higher Data Rate in the 2.4 GHz Band, IEEE Std 802.1 lg-2003 (Amendment to IEEE Std 802.11, 1999 Edition).

  4. Wang X., Kar K. Throughput modelling and fairness issues in CSMA/CA based ad-hoc networks. INFOCOM 2005, 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings of IEEE, 2005, vol. 1, pp. 23 – 34.

  5. Jamieson K., Balakrishnan H., Tay Y. C. Sift: A MAC protocol for event-driven wireless sensor networks // EWSN, 2006, vol. 6, pp. 260 – 275.

  6. Bharghavan V., Demers A., Shenkar S., Zhang L. MACAW: a media access protocol for wireless LAN’s, Proceedings of the SIGCOMM 94 Conference of Communications architectures, protocols and applications, 1994, pp. 212 – 225.

  7. Karn P. MACA-a new channel access method for packet radio, ARRL/CRRL Amateur radio 9th computer networking conference, 1990, vol. 140, pp. 134 – 140.

  8. So J., Vaidya N.H. Multi-channel mac for ad hoc networks: handling multi-channel hidden terminals using a single transceiver, Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing, Tokyo, 24-26 May 2004, pp. 222 – 233.

  9. Timmers M. et al. A distributed multichannel MAC protocol for cognitive radio networks with primary user recognition. Cognitive Radio Oriented Wireless Networks and Communications, 2007. CrownCom 2007, 2nd International Conference on IEEE, USA, August 2007, pp. 216 – 223.

  10. Bogdanov A.S., Shevtsov V.A. Trudy MAI, 2015, no. 84, available at:

  11. Semenova A., Simonova О., Omelyanchuk Е. On Connectivity Maintenance Problems in Planetary Robotics MANET, International Conference on Control, Instrumentation, Communication and Computational Technologies, ICCICCT-2015, Kumaracoil, India, 18-19 December 2015, pp. 621 – 625.

Download — informational site MAI

Copyright © 2000-2021 by MAI