Model wing inviscid flow-around computation by finite element method of high accuracy in conditions of thin ice formation

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Duong D. T.

Moscow Institute of Physics and Technology, 9, Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia

e-mail: duongdetai@gmail.com

Abstract

The article presents the model wing inviscid flow-around computation by finite element method of high accuracy in conditions of the thin ice formation. The goal of the article consists in solving the problem of flow-around MS(1)-317 profile and NACA 64A008 wing by non-viscous gas water suspension. The system of equations of water content in the framework of Euler approach is described. The system in itself is not hyperbolic, and regions of “vacuum”, where water content ρ tends to zero, appear. To eliminate the said problem the system regularizing was performed to make the system hyperbolic. The new primary variable r = lg ρ was introduced. The resulting modified water content equation system was solved by Galerkin method with discontinuous basis functions (RMG). Orthogonal polynomials are used as basis functions in RMG. Initial and boundary conditions were formulated. At the initial instant the aqueous dispersion mixture is considered moving together with the gas. Parameters on the solid surface were computed in a special way.

The problem solution is split into two stages. At the first stage, the inviscid dry gas flow-around the wing is computed. Then, the obtained field is used as the basic field, and the finely-dispersed aqueous mixture flow around the wing is calculated. The water suspension droplet, sticking to the wing surface (capture coefficient β), defines the probability of the thin ice appearance.

As an example, calcolations for two typical problems were performed: the flow around the MS(1)-317 profile and the NACA 64A008 wing. The obtained results were compared to the experimental data. It is shown, that in the case of moderate incidence angles, the RMG scheme of the third accuracy order ensures the calculation accuracy of the water droplet capture coefficient on the wing about the 5% order. It is acceptable in practice.

Keywords:

wing, thin ice, water content equations, Galerkin method with discontinuous functions, high accuracy order, capture coefficient

References

  1. Pavlenko O.V. Uchenye zapiski TsAGI, 2009, vol. XXXX, no. 2, pp. 61 – 67.

  2. Pavlenko O.V. Tekhnika Vozdushnogo Flota, 2012, vol. LXXXVI, no. 1(706), pp. 8 – 13

  3. Bol’shunov K.Yu., Babulin A.A. Trudy MAI, 2012, no. 51, available at: http://trudymai.ru/eng/published.php?ID=29088

  4. Giao T.V., Hsiung W.Y., Colin S.B., Marlin D.B., Timothy J.B. Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings, and an S-Duct Engine Inlet, NASA/TM, 2002, 430 p. available at: https://ntrs.nasa.gov/search.jsp?R=20020090796

  5. Wright W.B. Users manual for the Improved NASA lewis ice accretion code LEWICE 1.6, National Aeronautical and Space Administration (NASA), Contraactor Report, May, 1995, p. 97.

  6. Guffond D., Cassaing J., Brunet S. Overview of icing research at ONERA, AIAA 23rd Aerospace Sciences Meting, Reno, NV, USA, January, 1985, p. 8.

  7. Guilherme S., Otavio S., Euryale Z. Numerical Simulation of Airfoil Thermal Anti-Ice Operation. Part 1: Methematical Modeling, Journal of Aircraft, 2007, vol. 44, no. 2, pp. 627 – 633.

  8. Tran P., Brahimi M. T., Paraschivoiu I. P. A., Tezok F. Ice accretion on aricraft wings with thermodynamic effects. American Institute of Aeronautics and Astronautics, 32nd Aerospace Sciences Meeting & Exhibit. Reno, Nevada, AIAA Paper 1994-0605, p. 9.

  9. Hospers M.J., Hoeijmakers H.W.M. Eulerian Method for Ice Accretion on Multiple-Element Airfoil Sections, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 2010, Oriando, Florida, p. 13.

  10. Mikhailov S.V. Programma, realizuyushchaya zonnyi podkhod, dlya rascheta nestatsionarnogo obtekaniya vyazkim potokom turbulentnogo gaza lozhnykh aerodinamicheskikh form, vklyuchaya krylo s mekhanizatsiei (ZEUS), Svidetel’stvo ob ofitsial’noi registratsii programmy dlya EVM № 2013610172, Okt. 2012.

  11. Bourgault, Y., Boutanios Z., Habashi W. G. Three – dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP – ICE, Part 1: Model, Algorithm and Validation, Journal of Aircraft, 2000, pp. 95 – 103.

  12. Honsek R. Development of a Three – dimensional Eulerian Model of Droplet – Wall Interaction Mechanisms, Department of Mechanical Engineering McGill University, Montreal, June 2005, 110 p.

  13. Volkov A.V. Uchenye zapiski TsAGI, 2010, vol. XLI, no. 3, pp. 52 – 68.

  14. Cao Y., Zhang Q., Sheridan J. Numerical simulation of rime ice accretions on an aerofoil using an Eulerian method, The aeronautical journal, May 2008, vol. 112(1131), pp. 243 – 249.

  15. Wolkov A.V., Duong T.D. Uchenye zapiski TsAGI, 2017, vol. XLVIII, no. 5, pp. 3 – 18.

  16. Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag Berlin Heidelberg, 2009, 738 p.

  17. Podaruev V.Yu. Trudy MAI, 2017, no. 95, available at: http://trudymai.ru/eng/published.php?ID=84610

  18. Gubskii V.V. Trudy MAI, 2013, no. 68, available at: http://trudymai.ru/eng/published.php?ID=41737

  19. Bassi F., Rebay S. Numerical evaluation of two discontiuous Galerkin methods for the compressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, September 2002, vol. 40, pp. 197 – 207.

  20. Wolkov A.V. Application of the Multigrid Approach for Solving 3D Navier -Stokes Equations on Hexahedral Grids Using the Discontinuous Galerkin Method, Computational Mathematics and Mathematical Physics, 2010, vol. 50, pp. 495 – 508.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход