Modeling of aerial vehicles instrument bays by porous-composite impactors

Design, construction and manufacturing of flying vehicles


Kalyagin M. Y.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The article presents the model for parameters computation of an aerial vehicle’s (AV) instrument bay interaction with impediments (reinforced panels). The AV’s instrument bays are presented as porous-composite bodies, approaching the impediments at various angles. The viscoplastic flow in the panel material emerges under action of the highly intensive loads. Based on Renkin-Hugoniot theory, the author obtained the equations, describing the shock wave velocity in porous bodies. Computation results obtained employing these equations accord well with the laboratory tests results. The article presents the criterion of the beginning of viscoplastic flow progress in the panel under the action of impactor.

The proposed model of shock interaction allows obtain the laws of panel’s flexing and velocities alterations as a function of coordinates and time, as well as the distribution of stress and temperature.

Computaion resuts revealed that:

– The area of the intense viscoplastic flow was localized in a narrow region near the impactor contour;

– The destruction of the panel occurs at the stresses significantly exceeding the yield strength of the panel material;

– The effect of temperature growth on the physico-mechanical characteristics of the panel material in a first approximation can be ignored.

Calculations were performed for velocities of 300–900 m/s, panel thickness of 20 mm, and angles of interaction of 90° and 60°. The destruction of the panel occurs in the region where shear deformation reaches the limit value of p/4.

The results of the study can be used while solving problems of various bodies’ interaction.


impactor, reinforced panel, porous composite bodies, viscoplastic flow


  1. Kinslou R. Vysokoskorostnye udarnye yavleniya (High velocity shock phenomena), Moscow, Mir, 1973, 533 p.

  2. Bakhishyan F.A. Prikladnaya matematika i mekhanika, 1948, vol. XII, no. I, pp. 47 – 52.

  3. Rakhmatullin Kh.A., Dem’yanov Yu.A. Prochnost’ pri intensivnykh kratkovremennykh nagruzkakh (Strength under intensive short-time loads), Moscow, Fizmatgiz, 1961, 400 p.

  4. Sedov L.I. Mekhanika sploshnoy srediy (Continuum mechanics), Moscow, Nauka, 1973, vol. 1 – 536 p., vol. 2 – 583 p.

  5. Klyagin V.A., Petrov I.A., Shkurin M.V. Trudy MAI, 2017, no. 95, available at:

  6. Alves М, Micheli G. В., Driemeier L. High-velocity impact of plates, Mechanics of Solids in Brazil, 2007, pp. 51 – 61. ISBN 978-85-85769-30-7

  7. Ali Taherkhani, Mojtaba Sadighi, Ali Sadough Vanini, and Mohsen Zarei Mahmoudabadi. An experimental study of high-velocity impact on elastic-plastic crushable polyurethane foams, Aerospace Science And Technology, 2016, vol. 50, pp. 245 – 255.

  8. Chaboche J.L. A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 2008, vol. 24, no.10, pp. 1642 – 1693.

  9. Petushkov V.A. Sibirskii federal’nyi universitet, 2009, vol. 2, no. 3, pp. 336 – 351.

  10. Zukas Dzh.A., Nikolas T., Svift X.F. Dinamika udara (Dynamics of impact), Moscow, Mir, 1985, 255 p.

  11. Khabibulin M.V. Matematicheskoe modelirovanie yavlenii, proiskhodyashchikh v tverdykh telakh v rezul’tate vysokoskorostnogo udara i vzryva (Mathematical modeling of phenomena occurring in solids as a result of high-velocity impact and explosion), Doctor`s thesis, Tomsk, 2003, 264 p.

  12. Grubenab G., Solvernesad S., Berstadab T., Morinab D., Hopperstadab S., Langsethab M. Low-velocity impact behaviour and failure of stiffened steel plates, Marine Structures, 2017, vol. 54, pp. 73 – 91.

  13. Cheng-Hsiung Huang, Chuen-Jinn Tsai, Tung-Sheng Shih, Particle collection efficiency of an inertial impactor with porous metal substrates, Journal of Aerosol Science, 2001, vol. 32, no. 9, pp. 1035 – 1044.

  14. Fedorov S.V., Babkin A.V., Veldanov V.,Gladkov N.A., Ladov S.V. Vestnik MGTU im. N.E. Baumana, 2016, no. 5 (68), pp. 18 – 32.

  15. Afanas’eva F.A. Belov N.N.,Kozorezov K.I., Khabibulin M.V., Yugov N.T. Doklady Akademii nauk, 1997, vol. 42, no. 7, pp. 381 – 384.

  16. Nigmatullin R.I. Osnovy mekhaniki geterogennykh sred (Fundamentals of heterogeneous matters mechanics), Moscow, Nauka, 1978, 336 p.

  17. Fedorov S.V. On the penetration depth of a porous striker moving with a hypersonic velocity, Technical Physics. The Russian Journal of Applied Physics, 2007, vol. 52, no. 10, pp. 1379 – 1382.

  18. Aris Phillips, Han-ChinWu. A Theory of viscoplasticity, International Journal of Solids and Structures, 1973, vol. 9, issue 1, pp. 15 – 30.

  19. Falk M.L., Langer J.S. Dynamics of viscoplastic deformation in amorphous solids, Physical review, 1998, vol. 57, no. 6, pp. 7192 – 7205.

  20. Rice J. Constitutive Equations in Plasticity, Cambridge, MIT Press, 1975, 23 p.

Download — informational site MAI

Copyright © 2000-2022 by MAI