Solid fuel ramjet aircraft volumetric-mass configuration formation technique

Design, construction and manufacturing of flying vehicles


Аuthors

Alekseeva M. M.

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

e-mail: Alexeeva@ciam.ru

Abstract

The process of the volumetric-mass configuration formation (VMC) is one of the main stages a product shape formation. With the purpose of preliminary formation of the aircraft VMC, a complex mathematical model (CMM) and software to form shape of the system “Aircraft – power unit – fuel” were developed. Unlike earlier created, this CMM represents the uniform program complex intended for formation of a technical shape of aircraft and its power unit (PU) at stages of preliminary design. It allows compute not only thrust-economic and mass-size characteristics of an aircraft, but also geometric, aerodynamic, mass-volume characteristics and trajectory parameters of an aircraft movement by standard flight programs (profiles), as well as the effect of the properties of employed fuel on them.

The distinctive feature of this model its multidisciplinary approach and adaptedness to the optimization setting of the study. It allows optimize any airplane, engine and fuel parameters and their characteristics to form an optimal technical shape of the “Aircraft – power unit – fuel” system according to the selected effectiveness criteria. It gives the possibility to form a 3D model after configuring the project of a product to obtain more detailed information on aerodynamic characteristics (ADC), mass convergence of airframe and PU, computing of the center of masses and inertia moments of a product, preparing for 3D numerical modeling using the programs of 3D gas dynamic computation etc. The built-in universal model for computing equilibration thermodynamic characteristics of any gas mixture with account for K-phase allows evaluate effectiveness of application of this or that fuel for the given system. It expands greatly the abilities of both parametric and at optimization studies at various criteria. Dialog interface allows making changes in the project data and view the results in real time mode. It also provides availability of databases on starting and cruise solid fuels, structural materials and thermal-protective coating materials, ADC and characteristics of air-intake device which are updated daily and can be employed for the VMC formation.

Realization was performed by modern programming languages Fortran-95, Delphi and Win 32 API, using dynamic DLL technology. Verification of CMM is based on verification of the system model elements and on comparing the system criteria to real samples. With the help of this CMM, a number studies was performed to shape the “Aircraft–power unit–fuel” system.

Keywords:

mathematical model, aircraft, ramjet, engine, solid fuel

References

  1. Eger S.M., Liseitsev N.K. and others. Osnovy avtomatizirovannogo proektirovaniya samoletov (Fundamentals of aircraft automated design), Moscow, Mashinostroenie, 1986, 232 p.

  2. Eger S.M., Liseitsev N.K. and others. Proektirovanie samoletov (Design of aircraft), Moscow, Logos, 2005, 648 p.

  3. Raymer D.P. Aircraft Design: A Conceptual Approach, Washington, American Institute of Aeronautics and Astronautics, 1992, 391 p.

  4. Korol’kov O.N. Polet, 2001, no. 10. pp. 45 – 52.

  5. Alekseeva M.M., Raznoschikov V.V. Vserossiiskaya nauchno-tekhnicheskaya konferentsiya molodykh uchenykh i spetsialistov “Novye resheniya i tekhnologii v gazoturbostroenii”. Tezisy dokladov. (Moscow, 26-28 maya 2015), Moscow, TsIAM im. P.I. Baranova, 2017, 363 p.

  6. Raznoschikov V.V. Polet, 2008, no. 4, pр. 28 – 33.

  7. Raznoschikov V.V., Lukovnikov A.V., Yanovskaya M.L. Trudy MAI, 2010, no. 37, available at: http://trudymai.ru/eng/published.php?ID=13430

  8. Raznoschikov V.V., Popova A.B. Transport na al’ternativnom toplive, 2012, no. 1 (25), pр. 65 – 68.

  9. Komarov V.A., Kuznetsov A.S. Vybor oblika letatel’nogo apparata s ispol’zovaniem tekhnologii mnogodistsiplinarnoi optimizatsii (Aircraft layout selection employing multidisciplinary optimization technology), Samara, Izd-vo Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. S.P. Koroleva, 2012, available at: http://www.ssau.ru/files/education/uch_posob/Vybor%20oblika-Komarov%20VA.pdf

  10. Reizlin V.I. Chislennye metody optimizatsii (Numerical optimization methods), Tomsk, Izd-vo Tomskogo politekhnicheskogo universiteta, 2011, 105 p.

  11. Giunta A.A. Aircraft Multidisciplinary Design Optimization using Design of Experiments Theory and Response Surface Modeling Methods, Virginia, Virginia Polytechnic Institute and State University, 1997, 185 p.

  12. Sorokin V.A., Yanovskii L.S. and others. Proektirovanie i otrabotka raketno-pryamotochnykh dvigatelei na tverdom toplive (Design and development of solid fuel ramjet), Moscow, Izd-vo MGTU im. N.E. Baumana, 2016, 317 p.

  13. Obnosov B.V., Sorokin V.A. and others. Konstruktsiya i proektirovanie kombinirovannykh raketnykh dvigatelei na tverdom toplive (Design of combined solid fuel rocket engines on), Moscow, MGTU im. N.E. Baumana, 2014, 304 p.

  14. Sorokin V.A., Yanovskij L.S and others. Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh. Osnovy proektirovaniya i eksperimental’noi otrabotki (Ramjet on solid and pasty fuels. Fundamentals of design and experimental development), Moscow, Fizmatlit, 2010, 320 p.

  15. Pripadchev A.D. Raschet massy i razmerov letatel’nykh apparatov (Aircraft the mass and size calculation), Orenburg, OGU, 2013, 166 p.

  16. Mikeladze V.G., Titov V.M. Osnovnye geometricheskie i aerodinamicheskie kharakteristiki samoletov i raket (Basic geometric and aerodynamic characteristics of aircraft and missiles), Moscow, Mashinostroenie, 1990, 144 p.

  17. Bolkhovitinov O.V., Vol’nov I.I. and others. Konstruktsiya i prochnost’ letatel’nykh apparatov (The design and strength of aircraft), Moscow, VVIA imeni N.E. Zhukovskogo, 2004, 678 p.

  18. Komarov V.A. Polet, 2000, no. 1, pр. 31 – 39.

  19. Zaitsev V.N. Konstruktsiya i prochnost’ samoletov (The design and strength of aircraft), Kiev, Izdatel’skoe ob«edinenie “Vishcha Shkola”, 1978, 488 p.

  20. Kolomytsev P.T., Maizel’ Yu.M. Aviatsionnoe materialovedenie (Aviation Materials Science), Moscow, Mashinostroenie, 1971, 445 p.

  21. Karabasov Yu.S. and others. Novye materialy (New materials), Moscow, MISIS, 2002, 736 р.

  22. Belov G.V., Erohin B.T. and others. Kompozitsionnye materialy v dvigatelyakh letatel’nykh apparatov (Composite materials in aircraft engines), Moscow, MGTU imeni N.E. Baumana, 1998, 341 р.

  23. Kostikov V.I., Varenkov A.N. Sverkhtemperaturnye kompozitsionnye materialy (High-temperature composite materials), Moscow, Intermet Inzhiniring, 2003, 560 p.

  24. Shtansky D.V., Ikuhara Y., Yamada-Takamura Y., Yoshida T. Mechanism of Nucleation and Growth of Cubic Boron Nitride Thin Films, Science and Technology of Advanced Materials, 2001, vol. 1-4, pp. 219 – 225.

  25. Akimov G.A., Borodavkin V.A. and others. Aerodinamicheskie kharakteristiki letatel’nykh apparatov (Aerodynamic characteristics of aircraft), Saint Petersburg, Baltiiskii tekhnicheskii universitet, 2003, 120 p.

  26. Katz J. Low Speed Aerodynamics: From Wing Theory to Panel Methods, Singapore, McGraw Hill, 1991, 632 p.

  27. Hepperle M. Optimization of Flying Wing Transport Aircraft, Braunschweig, Institut für Aerodynamik und Strömungstechnik, 2005, 62 p.

  28. Sidel’nikov R.V., Tropin A.B. Aerodinamika raket. Raschety i issledovaniya aerodinamicheskikh kharakteristik letatel’nykh apparatov na EVM (Aerodynamics of missiles. Calculations and studies of aerodynamic characteristics of aircraft on a computer), Chelyabinsk, Izd-wo ChGTU, 1997, 55 p.

  29. Gratsienko N.A., Ikryannikov E.D. Raschet aerodinamicheskikh kharakteristik samoleta: uchebnoe posobie (Calculation of aircraft aerodynamic characteristics), Moscow, VVIA imeni N.E. Zhukovskogo, 1994, 255 р.

  30. Alekseeva M.M., Sevryuk A.O, Raznoschikov V.V. XLI Akademicheskie chteniya po kosmonavtike. Tezisy dokladov (Moscow, 2017), Moscow, MGTU im. N. E. Baumana, 2017, 565 p.

  31. Alekseeva M.M., Raznoschikov V.V., Aver’kov I.S. Aviadvigateli XXI veka. Tezisov dokladov. Moscow, 24-27 noyabrya 2015, Moscow, TsIAM imeni P.I. Baranova, 2015, 1132 p.

  32. Borovikov A., Gavriliouk V. and others. Gasdynamic design of supersonic and hypersonic airframe integrated inlets and nozzles, AIAA Peper 96-4549, 1996, 23 p.

  33. Trusov B.G., Belov G.V. Termodinamicheskoe modelirovanie khimicheski reagiruyushchikh system (Thermodynamic modeling of chemically reacting systems), Moscow, MGTU imeni N.E. Baumana, 2013, 96 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход