Dynamic state of aviation products structures with weld junctions

Strength and thermal conditions of flying vehicles


Аuthors

Zareckiy M. V.*, Sidorenko A. S.**

Izhevsk Electromechanical plant "KUPOL", 3, Pesochnaya str., Izhevsk, 426033, Russia

*e-mail: iemz@kupol.ru
**e-mail: k906@mai.ru

Abstract

The reliability of aviation products structures depends on vibration intensity acting while joint flight of the product with carrier aeroplane and causing significant stress levels. The highest stress level is observed in the zones of structural irregularities (junctions and abrupt changes of cross-sections). Thus, the problem of credible determining of vibration characteristics in the product structure in the zones of irregularity under operation conditions is topical. At the same time, experimental studies of vibrations in the zones of jointing and irregularities are rather labor consuming and costly.

The article presents the methodology and results of numerical models development and calculated estimation data of vibration characteristics of an aviation product structure containing continuous weld junctions. Modeling of dynamic state of an aviation product was performed employing the system of solid-state modeling and complex structures design SolidWorks. Models developed employing solid finite elements allow account for structural irregularity, and estimate characteristics of components of spatial local deformation.

Based on the developed models, dynamic characteristics of a product structure and vibration acceleration characteristics at random kinematic loading for various variants of weld junctions were determined. Spectral densities and accelerations distribution dispersion in various points of the structure were plotted. Zones of maximum accelerations levels were determined corresponding to the conditions of joint flight with a carrier airplane. Significant effect of weld joint characteristics on the vibration acceleration levels of the product structure was registered.

The developed methodology can be applied to estimate characteristics of dynamic state of frames and structural components of aviation products suspensions at various weld joint characteristics and specified conditions of random loading.

Keywords:

dynamic state, weld joint, random vibrations, finite element method, vibratiun acceleration, spectral density

References

  1. Figurovskii V.I. Raschet na prochnost’ bespilotnykh letatel’nykh apparatov (Strength calculation of unmanned aerial vehicles), Moscow, Mashinostroenie, 1973, 360 p.

  2. Dimentberg F.M., Kolesnikov K.S. Vibratsii v tekhnike. Kolebaniya mashin, konstruktsii i ikh elementov (Vibration in engineering. Oscillations of machines, structures and their elements), Moscow, Mashinostroenie, 1980, vol. 3, 544 p.

  3. Firsanov V.V. Dinamika i prochnost’ ustanovok aviatsionnogo vooruzheniya (Dynamics and strength of aircraft armament units), Moscow, Izd-wo MAI, 2007, 400 p.

  4. Ierusalimskii K.M., Korneev A.N. Vliyanie ostatochnykh napryazhenii posle svarki na prochnost’ i ustoichivost’ elementov konstruktsii (Effect of residual stresses after welding on the strength and stability of structural elements), Moscow, Trudy TsAGI, no. 2633, 1998, pp. 34- 43.

  5. Vinokurov V.A., Kurkin S.A., Nikolaev G.A. Svarnye konstruktsii. Mekhanika razrusheniya i kriterii rabotosposobnosti (Welded structures. Mechanics of destruction and criteria of working capacity), Moscow, Mashinostroenie, 1996, 576 p.

  6. Merkulov I.E., Endogur A.I. Trudy MAI, 2017, no. 94, available at: http://trudymai.ru/eng/published.php?ID=81168

  7. Golikov N.I., Sidorov M.S. Redistribution of residual welding stresses in ultrasound impact treatment of welded joints in pipes, Welding international, 2012, vol. 26, no. 10, pp. 765-768.

  8. Zakharov M.N., Nasonov V.A. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2014, no. 7(652), pp. 76 – 82.

  9. Mironov A.A., Volkov V.M. How to estimate the reliability of a weld joint under conditions of cyclic loading according to the results of a nondestructive check, Journal of Machinery Manufacture and Reliability, 2011, vol. 40, no. 1, pp. 31 – 34.

  10. Antonov A.A. Investigation of fields of residual stresses in welded structures, Welding International, 2014, vol. 28, no. 12, pp. 966 – 969.

  11. Firsanov V.V., Serpicheva E.V. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2014, no. 11(1), pp. 279 – 288.

  12. Tsumarev Y.A., Tsumarev E.N., Ignatova E.V., Latypova E.Y. Reducing stress concentration in welded joints by brazing, Welding International, 2015, vol. 29, no. 3, pp. 227 – 229.

  13. Wijker Jaap. Random vibrations in spacecraft structures design: Theory and applications. Springer Science+Business Media B.V. 2009, 518 p.

  14. Elishakoff I. Probabilistic Methods in the Theory of Structures: Strength of Materials, Random Vibrations, and Random Buckling, Songapore, World Scientific, 2017. 522 p.

  15. Martins J.R.R.A., Hwang J.T. Review and unification of methods for computing derivatives of multidisciplinary computational models, AIAA Journal: devoted to aerospace research and development, 2013, vol. 51, no. 11, pp. 2582 – 2599.

  16. Mahutov N.A., Gadenin M.M., Odincev I.N. Razumovskij I.A. Problemy mashinostroeniya i nadezhnosti mashin, 2015, no. 6, pp.53 – 62.

  17. Galimov EH.R., Belyaev A.V., Sirotkina L.V. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2015, vol. 71, no. 6, pp. 84 – 87.

  18. Alyamovskij A.A. SolidWorks Simulation. Inzhenernyj analiz dlya professionalov: zadachi, metody, rekomendacii (SolidWorks Simulation. The engineering analysis for professionals: problems, methods, guidelines), Moscow, DMK Press, 2015, 562 p.

  19. Tushev O.N., Berezovskij A.V. Problemy mashinostroeniya i nadezhnosti mashin, 2013, no. 1, pp. 18 – 27.

  20. Zareckij M.V., Sidorenko A.S. Trudy MAI, 2012, no 58, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=29685

  21. Shahmatov D.M. Svarka i diagnostika, 2013, no 1, pp. 32 – 36.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход