Studying the safe flight termination ballistic scheme of manned transport spacecraft engine module

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Kudryavtsev S. I.

Central Research Institute of Machine Building, TSNIIMash, 4, Pionerskaya str., Korolev, Moscow region, 141070, Russia

e-mail: s.i.kudriavtsev@yandex.ru

Abstract

The problem of safe flight termination organization for engine module (EM) of a prospective manned transport spacecraft (MTS) in the case of descent from the Earth’s artificial satellite orbit and high-precision landing of reentry module (RM) on Russian territory is considered. In MTS project the reboost of EM after its separation from RM after MTS deorbitation is planned in order to provide its orbital life-time on several orbits. Then EM will be deboosted for drowning its unburned elements of structure (UES) in desert area in the South of Pacific. Such a scenario of MTS descent will eliminate the possibility of damage for the population and objects of ground infrastructure near RM landing site. The features of EM reboost maneuver to ensure UES drowning in permitted region are studied. As a result elliptic pre-descent EM orbit has a very adverse position of perigee relatively the target drowning area. So, additional fuel consumption for reliable EM UES srowning will be required. The features of EM descent from elliptic pre-descent orbit are also analyzed. Dependence of longitudinal size of UES drowning points dispersion area (SPDA) vs deorbiting delta-V value is given. The purpose of trajectory design consists in selecting minimum delta-V then SPDA is still inside of permitted area borders. Elliptic profile of EM pre-descent orbit causes a specific effect of some disturbances such as engine thrust uncertainty to the total SPDA size. This study permits to determine the way to decrease SPDA size for the same fuel consumption. Fuel consumption for EM safe flight termination including fuel for EM reboost and final deorbiting is estimated. Scenarios of MTS descent for the cases of RM landing in various regions of Russia are given.

Keywords:

prospective manned spacecraft, engine module, safe flight termination, drowning of structural elements

References

  1. Federal’naya kosmicheskaya programma Rossii na 2016 – 2025 gody. Utverzhdena postanovleniem Pravitel’stva RF ot 23 marta 2016 g. № 230, available at: https://www.roscosmos.ru/22347/

  2. Perspektivnaya pilotiruemaya transportnaya sistema. Eskizy i plany rabot po korablyu, available at: http://www.russianspaceweb.com/ppts.html.

  3. Ivanov N.M., Lysenko L.N. Ballistika i navigatsiya kosmicheskikh apparatov (Spacecraft ballistics and navigation), Moscow, Izdatel’stvo MGTU im. N.E Baumana 2016, 528 p.

  4. Kudryavtsev S.I. Kosmonavtika i raketostroenie, 2015, no. 1(80), pp. 5 – 13.

  5. Feoktistov K.P. Kosmicheskie apparaty (Spacecraft), Moscow, Voenizdat, 1983, 319 p.

  6. Yaroshevskiy V.A. Vkhod v atmosferu kosmicheskikh letatelnykh apparatov (Spacecraft atmospheric entry), Moscow, Nauka, 1988, 335 p.

  7. Martin J. Vkhod v atmosferu (Atmospheric entry), Moscow, Mir, 1969, 320 p.

  8. Finchenko V.S., Ustinov S.N., Ivankov A.A. Vestnik NPO im. S.A. Lavochkina, 2014, no. 1 (22), pp. 89 – 96.

  9. Plotnost’ naseleniya Rossii po regionam. Samye gustonaselennye i malonaselennye raiony, available at: www.statdata.ru.

  10. Mirovye demograficheskie perspektivy. Organizatsiya Ob«edinennykh Natsii, available at: http://viktorvoksanaev.narod.ru/N0921054.pdf

  11. Esakov V.A., Kudryavtsev S.I., Seregin D.N. Lesnoi vestnik, 2015, vol. 19, no. 3, pp. 145 – 151.

  12. Parametry Zemli 1990 goda (PZ-90.11). Postanovlenie pravitel’stva Rossiiskoi Federatsii ot 28 dekabrya 2012 g. № 1463 ob ustanovlenii obshchezemnoi geotsentricheskoi sistemy koordinat v kachestve gosudarstvennoi sistemy koordinat dlya ispol’zovaniya v tselyakh geodezicheskogo obespecheniya orbital’nykh poletov i resheniya navigatsionnykh zadach, available at: http://www.consultant.ru/document/cons_doc_LAW_140248/92d969e26a4326c5d02fa79b8f9cf4994ee5633b/

  13. Atmosfera Zemli verkhnyaya. Model plotnosti dlya ballisticheskogo obespecheniya poliotov iskusstvennykh sputnikov Zemli. GOST R 25645.166-2004 (Upper Earth’s atmosphere. Density model for ballistic support of the Earth artificial satellites flights. Russian standard 25645.166-2004), Moscow, Izdatel’stvo standartov, 2004, 24 p.

  14. Atmosfera standartnaya. Parametry. GOST 4401-81 (Standard atmosphere. Parameters. State Standard 4401-81), Moscow, Standarty, 1981, 180 p.

  15. Kudryavtsev S.I., Savchenko A.A. Avtomatizirovannyi kompleks programm rascheta spuskov korablei “Soyuz TM” i “Progress M” Sbornik “Raketno-kosmicheskaya tekhnika” (Automated complex software for “Souyz TM” and “Progress M” spacecraft reentry calculation. Rocket and space technic), Moscow, TSNIImash, 1991, ser. IX, no. 2, pp. 73 – 81.

  16. Karagodin V.V. Trudy MAI, 2013, no. 66, available at: http://trudymai.ru/eng/published.php?ID=41510.

  17. Kokunina L.Kh. Osnovy aerodinamiki (Basics of aerodynamics), Moscow, Alliance, 2015, 200 p.

  18. Andreevskiy V.V. Dinamika spuska kosmicheskikh apparatov na Zemlyu (Dynamics of spacecraft descent to the Earth), Moscow, Mashinostroenie, 1970, 235 p.

  19. Feodos’ev V.I. Osnovy tekhniki raketnogo poleta (Basics of rocket flight Technic), Moscow, Nauka, 1979, 496 p.

  20. Kutomanov A.Yu., Kudryavtsev S.I. Kosmonavtika i raketostroenie, 2016, no. 1 (86), pp. 27 – 33.

  21. Sikharulidze Yu.G. Ballistika i navedenie letatelnykh apparatov (Ballistics and guidance of flying vehicles), Moscow, BINOM. Laboratoriya znanii, 2011, 408 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход