Launching a group of microsatellites employing intermediate orbit with synchronous precession

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Ulybyshev S. Y.

Central Scientific Research Institute of Chemistry and Mechanics, 16a, ul. Nagatinskaya, Moscow, 115487, Russia

e-mail: wardoc5@rambler.ru

Abstract

The paper considers the task of launching a grouping of microsatellites employing intermediate orbits, possessing the property of synchronous precession of the ascending node longitude relative to the working orbit. As launch vehicle the article considers the “Soyuz-2.1 b” with launch block “Volga”, which after separation of the payload performs the inundation maneuver. The proposed scheme envisages separation of satellites from launch vehicles in the intermediate orbit. Then they are independently translated into the working orbit. This allows increase the mass delivered payload and reduce deployment time segment of the satellite system (SS) with installation of microsatellites in specified positions on the working orbit to 1.5 days. It reduces the required cost of fuel on the injection module to the problem of inundating. The simultaneous launch the grouping microsatellite segment SS into orbit with synchronous precession allows employ it as the standby orbit and significantly reduce the time of recovery of SS in case of failure of one of the microsatellite in the working orbit. The costs of fuel herewith for shifting standby microsatellite to the working orbit will correspond to nominal values for other aggregates from the given segment of SS. The article presents the methodology for evaluating costs of fuel and characteristic velocity for operation of putting a microsatellites grouping into intermediate orbit, bringing them to the working orbit and performing inundation maneuver by the launching block.

Comparison on time and energy indicators with the traditional option of putting groups of microsatellites directly on the working orbit when after separation apparatuses are set in the desired operating position through re-phasing maneuvers. The revealed advantages in terms of increasing mass of a payload delivered to an intermediate orbit are substantially dependent on the magnitude of the orbital inclination and the mostly tangible for near-polar deviations from 75° to 105°. While putting microsatellite groupings into near-polar orbits the additional payload mass may be comparable to the mass of a microsatellite itself.

Keywords:

microsatellite, satellite grouping, intermediate orbit, orbit with synchronous precession, working orbit, flight simulator stand, the re-phasing, characteristic speed

References

  1. Kljushnikov V.Ju., Kuznecov I.I., Osadchenko A.S. Materialy nauchno-tekhnicheskoi konferentsii “Innovatsionnye avtomaticheskie kosmicheskie apparaty dlya fundamental’nykh i prikladnykh issledovanii. Aktual’nye voprosy sozdaniya sluzhebnykh i nauchnykh sistem”, (Anapa, 06-11 sentyabrya 2015.), Khimki, NPO im. S. A. Lavochkina, 2015, pp. 73 – 79.

  2. Lobanov A.G. Materialy nauchno-tekhnicheskoi konferentsii “Innovatsionnye avtomaticheskie kosmicheskie apparaty dlya fundamental’nykh i prikladnykh issledovanii. Aktual’nye voprosy sozdaniya sluzhebnykh i nauchnykh sistem”, (Anapa, 06-11 sentyabrya 2015), Khimki, NPO im. S. A. Lavochkina, 2015, pp. 183 – 188.

  3. Kosmodem’yanskii E.V., Kirichenko A. S., Klyushin D. I. et al. Trudy MAI, 2014, no. 74, available at: http://trudymai.ru/eng/published.php?ID=49243.

  4. Proton Launch System Mission Planner’s Guide, available at:: http://www.ilslaunch.com

  5. Asyushkin V.A., Ishin S.V. Vestnik NPO im. S.A. Lavochkina, 2011, no. 1, pp. 9 – 12.

  6. Asyushkin V.A., Vikulenkov V.P., Ishin S.V., Pichkhadze K.M., Polishchuk G.M. Vestnik NPO im. S.A. Lavochkina, 2009, no. 2, pp. 13 – 18.

  7. Olesen S.R., Myers R.M., Kluever C.A., Riehl J.P., Curran F.M. Advance Propulsion for Geostationary Orbit Insertion and North-South Station Keeping, Journal of Spacecraft and Rockets, 1997, vol. 34, no. 1, pp. 22 – 28.

  8. Petukhov V.G., Konstantinov M.S., Fedotov G.G. 1st ACT Global Trajectory Optimization Competition: Results found at Moscow Aviation Institute and Khrunichev State Research and Production Space Center, Acta Astronautica, 2007, no. 61(9), pp. 775 – 785.

  9. Popov G.А., Konstantinov M.S., Petukhov V.G. Vestnik RFFI, 2006, no. 3(47), pp. 16.

  10. Konstantinov M.S., Min Tein. Trudy MАI, 2017, no. 95, available at: http://trudymai.ru/eng/published.php?ID=84516

  11. Sinitsyn A.A. Kosmonavtika i raketostroenie, 2009, no. 4 (57), pp. 95 – 108.

  12. Ulybyshev Yu.P. Kosmicheskie issledovaniya, 2012, vol. 50, no. 5, pp. 403 – 418.

  13. Pegachkova E.А. Trudy MАI, 2011, no. 47, available at: http://trudymai.ru/eng/published.php?ID=26559

  14. Medvedev A., Khatulev V., Yuriev V., Petukhov V., Konstantinov M.S. Combined flight profile to ins ert telecommunication satellite in to geostationary orbit using «Rockot» light-weight class launch vehicle, 51st International Astronautical Congress, IAF-00-V.2.09, Rio-de-Janeiro, Brasilia, October 2 – 6, 2000, pp. 1 – 9.

  15. Gorbulin V.I., Shcherbakov V.I. Trudy VNIIEM. Voprosy elektromekhaniki, 2013, vol. 132, no. 1, pp. 21 – 26.

  16. Description of the Globalstar System, Globalstar, L.P., 3200 Zanker Road, San Jose, Ca. 95164-0670. December 07, 2000, available at: https://gsproductsup-port.files.wordpress.com/2009/04/description-of-the-global-star-system-gs-tr-94-0001-rev-e-2000-12-07.pdf

  17. Krylov A.M. Tekhnologii i sredstva svyazi, 2011, Spetsial’nyi vypusk “Sputnikovaya svyaz’ i veshchanie”, pp. 46 – 49.

  18. Anpilogov V.R. Tekhnologii i sredstva svyazi, 2015, no. 4, pp. 62 – 67.

  19. Barabanov A.A., Papchenko B.P., Pichkhadze K.M., Rebrov S.G., Semenkin A.V., Sysoev V.K., Yanchur S.V. Vestnik NPO im. S. A. Lavochkina, 2015, no. 1, pp. 34 – 40.

  20. Danilyuk A.Yu., Klyushnikov V.Yu., Kuznetsov I.I., Osadchenko A.S. Vestnik NPO im. S. A. Lavochkina, 2015, vol. 29, no. 3, pp. 107 – 113.

  21. Kostev Yu.V., Mezenova O.V., Pozin A.A., Shershakov V.M. Izvestiya vuzov. Priborostroenie, 2016, vol. 59, no. 6, pp. 482 – 488.

  22. Ariane 6 Launch Vehicle. Payload User’s Guide. Rev 0 (May 16, 2016), available at: http://www.arianespace.com/wp-content/uploads/2017/02/Ariane6_Users-Manual_February2017.pdf

  23. Falcon 9 Launch Vehicle. Payload User’s Guide. Rev 2 (October 21, 2015), available at: http://www.spacex.com/sites/spacex/files/fal con_9_users_guide_rev_2.0.pdf

  24. Zharov A. Tekhnologii i sredstva svyazi, 2014, Spetsial’nyi vypusk “Sputnikovaya svyaz’ i veshchanie”, pp. 72 – 78.

  25. Ulybyshev S.Yu. Inzhenernyi zhurnal: nauka i innovatsii, 2016, no. 3, available at: http://engjournal.ru/catalog/arse/adb/1471.html DOI 10.18698/2308-6033-2016-03-1471

  26. Avdeev Yu.F., Belyakov A.I., Brykov A.V. et al. Polet kosmicheskikh apparatov (Spacecraft flight), Moscow, Mashinostroenie, 1990, 272 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход