Scientific-methods approach to evaluating readiness of complex technical systems with account for metrological assurance

Metrology and metrological assurance


Gusenitsa Y. N.*, Dorozhko I. V.**, Kochanov I. A., Petukhov A. B.

Military spaсe Akademy named after A.F. Mozhaisky, 13, Zdanovskaya str., Saint Petersburg, 197198, Russia



Substantiated evaluation of metrological assurance procedures effect on readiness for application is necessary while complex technical systems design and maintenance of their life cycle. It requires development of new complex models, connecting reliability figures with indices of technical condition.

The proposed approach and models are based on fundamental concepts and equations of the reliability theory of technical systems. The model proposed in the article is based on well-known and well-tested apparatus of Markov random processes, and analytical dependences obtained from the solution of systems of equations of Kolmogorov-Chapman, describing the developed model.

Mathematical models binding the coefficient of readiness, control reliability and the probability of metrological activities successful implementation of complex technical systems were developed. The analytical dependence linking the indicators of reliability of complex technical complex and the performance of the process control and metrological procedures was obtained. The proposed network model for obtaining the probability of successful implementation on metrological support of complex technical systems was suggested. The article presents a calculated example of the evaluation of the effect of metrological assurance procedures on the maintenance of readiness to apply complex technical systems. Analysis of the results allows draw inferences on the metrological assurance procedures degree of effect on the maintenance of readiness to use complex technical systems.

The proposed scientific and methodical approach can be employed while complex technical systems development, as well as justifying the composition and characteristics of technical means of metrological assurance.

The obtained analytical relationship may present practical interest for military representatives, employees of bodies of state certification, industry representatives. It can be used also for formation and justification of reliability requirements, as well as requirements to metrological support in tactical and technical tasks for development (modernization) of complex technical systems, as well as to account for the effect of activities of metrological assurance on availability of complex technical systems at all stages of the life cycle.


condition monitoring, metrological maintenance, coefficient of readiness


  1. Borodin V.V. Trudy MAI, 2012, no. 58, available at:

  2. Butyrin A.V., Dorozhko I.V., Kochanov I.A., Osipov N.A. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2016, no. 652, pp. 137 – 146.

  3. Guzenko V.L., MironovA.N., Mironov E.A., Shestopalova O.L. Sovremennye naukoemkie tekhnologii, 2016, no. 5 – 2, pp. 232 – 238.

  4. Gusenitsa Ya.N., Malakhov A.V., Pestun U.A. Izvestiya Sankt-Peterburgskogo gosudarstvennogo elektrotekhnicheskogo universiteta “LETI”, 2017, no. 9, pp. 84 – 88.

  5. Gusenitsa Ya.N., Novikov A.N., Malakhov A.V., Sherstobitov S.A. Metrologiya, standartizatsiya i sertifikatsiya (Metrology, standardization and certification), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2016, 153 p.

  6. Malakhov A.V., Gusenitsa Ya.N. I Vserossiiskaya nauchno-prakticheskaya konferentsiya “Aktual’nye voprosy razvitiya vooruzheniya, voennoi i spetsial’noi tekhniki protivovozdushnoi i protivoraketnoi oborony, Kosmicheskikh voisk Vozdushno-kosmicheskikh sil”, Sbornik trudov, Moscow, Izd-vo MGTU im. N.E. Baumana, 2016, pp. 102 – 116.

  7. Malakhov A.V. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2017, vol. 1, no. 3 (31), pp. 19 – 27.

  8. Smagin V.A., Sherstobitov S.A. Informatsiya i kosmos, 2016, no. 1, pp. 75 – 79.

  9. Sherstobitov S.A. Informatika i sistemy upravleniya, 2017, no. 1 (51), pp. 95 – 99.

  10. Chernov I.V. Informatsiya i kosmos, 2016, no. 4, pp. 121 – 126.

  11. Kumar U.P., Somasundaram U., Kothiyal M.P., Mohan N.K. Microscopic TV Holography and Interferometry for Surface Profiling and Vibration Amplitude Measurement in Microsystems, Defence Science Journal, 2011, vol. 61, no. 5, pp. 491 – 498.

  12. Sign R., Nagarajan R., Poonia K., Mohan H., Mangalhara J.P. High Temperature Calibration of Thermal Imagers for Infrared Measurements on Military Platforms, Defence Science Journal, 2017, vol. 67, no. 2, pp. 188 – 192.

  13. Decker R., Duca M., Spickert-Fulton S. Measurement of bullet impact conditions using automated in-flight photography system, Defence Technology, 2017, vol. 13, pp. 288 – 294.

  14. Chiribella G. Optimal networks for quantum metrology: semidefinite programs and product rules, New Journal of Physics, 2012, vol. 14, pp. 19.

  15. DoD automatic test systems executive directorate. DoD automatic test systems master plan, 2012, pp. 31, available at:

  16. Errea S., Grigor J., King D.F., Matis G., McHugh S., McKechnie J., Nehring B. Advanced E-O Test Capability for U.S. Army Next Generation Automatic Test System. Proc. of SPIE, 2015, vol. 9452, pp. 1 – 10.

  17. Knott P.A. A search algorithm for quantum state engineering and metrology, Journal of Physics, 2016, vol. 18, pp. 10.

  18. Lazzarin A., Orsi E., Sanfilippo U. Statistical analysis on experimental calibration data for flowmeters in pressure pipes, Journal of Physics: Conference Series, 2017, vol. 882, pp. 10.

  19. Milton A.F., Barone F.B., Kruer M.R. Influence of nonuniformity on infrared focal plane array performance, Optical Engineering, 1985, vol. 24(5), pp. 855 – 862.

  20. O’Connell J. Metrology: The Creation of Universality by the Circulation of Particulars, Social Studies of Science, 1993, vol. 23, pp. 129 – 173.

Download — informational site MAI

Copyright © 2000-2022 by MAI