Multi-channel ScanSAR mode realization in a space-based SAR

Radiolocation and radio navigation


Bulygin M. L.*, Markova A. S.**, Mullov K. D.***

Scientific Research Institute of Precision Instruments, 51, Str., Dekabristov, Moscow, 127490, Russia



This paper discusses implementation of a space-based synthetic aperture radar (SAR) multi-channel ScanSAR mode. Employing the digital active electronically scanned array (AESA) allows forming a multi-beam pattern and implement high resolution multi-channel SAR modes. One option is implementation of the multi-channel ScanSAR mode.

Computation of imaging characteristics and SAR parameters are given for multi-channel ScanSAR mode. For example, using K = 4 antenna beams (channels) allows scanning M = 3 partial strips (total swath of 70.29 km, elevation angle of 40°) with a resolution of about 3.7 m. For single channel SAR system with aperture size 4 × 1.6 m resolution is 8 m.

SAR digital AESA was realized as a multi-segment antenna. Each segment is completely autonomous and allows form, transmit, receive and process signals. This architecture requires an exact synchronization of the segments with each other. Synchronous operation and management of all segments is ensured by the on-board processor.

Intersegmental time synchronization is realized as follows. For transmition synchronization in the samples of the linear frequency modulation probe signal, a linear phase shift is added. At the receiving point, delay filters are used to synchronize signals in each segment. These approaches allow increasing the synchronization accuracy by 20 times.

The presented synchronization methods are implemented employing high-speed field-programmable gate array. To create a fault-tolerant firmware realizing high-speed signal processing, it is necessary to account for the specific conditions of the on-board SAR equipment in space functioning. This requires selecting the appropriate hardware in the design of the SAR system.

Thus, the multichannel scanning mode employing allows improve significantly the radar imaging characteristics. Implementation of this mode requires solving the problem of an intersegmental synchronization of on-board equipment. At the same time, the on-board equipment and its firmware must meet the requirements of fault tolerance in space.


synthetic aperture radar, field-programmable gate array, digital signal processing


  1. Verba V.S., Neronskii L.B., Osipov I.G., Turuk V.E. Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya (Space-borne Earth Surveillance Radar Systems), Moscow, Radiotekhnika, 2010, 680 p.

  2. Kovalenko A., Riman V., Shishanov A., Vnotchenko S. Design of Prospective Spaceborne Multi-Aperture UWB Polarimetric High Perfor-mance SAR System, 4th Microwave and Radar Week MRW-2010, 11th International Radar Symposium, Vilnius, Lithuania, June 16-18, 2010, Conference Proceedings, pp. 490 – 492.

  3. Kovalenko A., Riman V., Shishanov A., Vnotchenko S. Architecture and Perfomance of the Spaceborne Multi-Aperture High-Resolution SAR System Based On Analog-Digital Active Array Antenna, EUSAR 2012, 9th European Conference on Synthetic Aperture Radar. Electronic Proceedings, 23-26 April 2012, Nurnberg, Germany, pp. 422.

  4. Krieger G., Gebert N. and Moreira A Digital beamforming techniques for spaceborne radar remote sensing in Proc. EUSAR. Germany. Dresden. 2006. URL:

  5. Gerhard Krieger, Nicolas Gebert, Alberto Moreira: Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, January 2008, vol. 46, no. 1, pp. 31 – 46

  6. M. Younis, F. Queiroz de Almeida, F. Bordoni, P. López-Dekker, G. Krieger. Digital beamforming techniques for multi-channel synthetic aperture radar, Geoscience and Remote Sensing Symposium, (IGARSS) 2016, IEEE International, 10-15 July 2016, Beijing, China, pp. 1412 – 1415.

  7. G. Krieger, N. Gebert, and A. Moreira. Digital Beamforming And Multidimensional Waveform Encoding for Spaceborne Radar Remote Sensing, Proceedings of the 4th European Radar Conference, 10-12 October 2007, Munich, Germany, pp. 43 – 46.

  8. Bulygin M.L., Vnotchenko S.L., Kovalenko A.I., Riman V.V., Chechina I.N. Uspekhi sovremennoi radioelektroniki, 2015, no. 5, pp. 20 – 26.

  9. Timmaraju A.S., Anand D.A. Input-Output Logic based Fault-Tolerant Design Technique for SRAM-based FPGA’s, arXiv:1311.0602v2, 2013, available at:

  10. Bulygin M., Kovalenko A., Riman V., Vnotchenko S. Multi-channel modes implementation in spaceborne SAR with digital active electronically scanned array, EUSAR 2016, 11th European Conference on Synthetic Aperture Radar. Electronic Proceedings, Hamburg, Germany, 6-9 June 2016, pp. 315 – 318.

  11. Bulygin M.L., Vnotchenko S.L. Trudy MAI, 2015, no. 83, available at:

  12. Bryzgalov A.P., Koval'chuk I.V., Khnykin A.V., Shevela I.A., Yusupov R.G. Trudy MAI, 2011, no. 43, available at:

  13. Tikhomirov A.V., Omel'yanchuk E.V., Semenova A.Yu. Trudy MAI, 2016, no. 91, available at:

  14. Bulygin M.L., Mullov K.D. Trudy MAI, 2015, no. 80, available at:

  15. Samarah A.A. Novel Approach for Generating and Processing Digital Chirp Signals Using FPGA Technology for Synthetic Aperture Radar (SAR) Applications, Dissertation, Siegen, Germany, University of Siegen, 2012, 122 c.

  16. Mullov K.D. Trudy MAI, 2016, no. 87, available at:

  17. Tarasov I. Elektronika: nauka, tekhnologiya, biznes, 2011, no. 3, pp. 70 - 74.

  18. Repneva A.I., Ushkar M.N. Trudy MAI, 2011, no 49, available at:

  19. Edwards M.C., Zaugg E. C. Design of a compact, modular, multi-frequency band, multi-mode, multi-channel synthetic aperture radar, 9th European Conference on Synthetic Aperture Radar (EUSAR '12), Nuremberg, Germany, April 2012. pp. 44 – 47.

  20. Marwan Younis, Felipe Queiroz de Almeida, Paco López-Dekker, Gerhard Krieger, Techniques and Modes for Multi-Channel SAR Instruments. EUSAR 2016, 11th European Conference on Synthetic Aperture Radar. Electronic Proceedings, 6-9 June 2016, Hamburg, Germany. pp. 812 – 817.

  21. Qin Xin, Zhihong Jiang, Pu Cheng, and Mi He. Signal Processing for Digital Beamforming FMCW SAR, Mathematical Problems in Engineering, vol. 2014, Article ID 859890, 10 pages, 2014, available at:

  22. Rafael Rincon, Temilola Fatoyinbo, Batuhan Osmanoglu, Seung-Kuk Lee, K. Jon Ranson, Victor Marrero Mark Yeary, Development of NASA'S Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2). EUSAR 2016, 11th European Conference on Synthetic Aperture Radar. Electronic Proceedings, 6-9 June 2016, Hamburg, Germany. pp. 1251 - 1254.

  23. Rafael F. Rincon, Manuel A. Vega, Manuel Buenfil, Alessandro Geist, Lawrence Hilliard, Paul Racette, NASA's L-Band Digital Beamforming Synthetic Aperture Radar, IEEE Transactions on Geoscience and Remote Sensing, 2011, vol. 49, pp. 3622 - 3628.

  24. M. Younis, C. Fischer, W. Wiesbeck. Digital beamforming in SAR system, IEEE Transactions on Geoscience and Remote Sensing, July 2003, vol. 41, no. 71, pp. 1735 – 1739.

Download — informational site MAI

Copyright © 2000-2021 by MAI