Analysis of “flying wing” scheme application at unmanned aerial vehicles of “air-to-surface” class

Design, construction and manufacturing of flying vehicles


Аuthors

Konyukhov I. K.

State Engineering Design Bureau “Raduga” named after AY Bereznyak, 2а, Zhukovskogo str., Dubna, Moscow region, 141980, Russia

e-mail: ivan133@post.ru

Abstract

The article describes some ways and hardships of a “flying wing” scheme application while developing long-range cruise missiles of “air-to-surface” class. Advantages and disadvantages of “flying wing” arrangementh and history of its development are briefly touched. An attempt to classify the “flying wing” type in applications to the particular structures of aircraft was made. A number of problems, occurred while these aerial vehicles development, were described. One of them is еру wing parameters selection (airfoil type, warps, sweep angle etc.) to ensure maximum aerodynamic quality over the whole flight path. This problem is not simple due to the low wing loading, specific to the arrangement under discussion, which is not optimal at low flight altitudes required for effective overcoming the enemy air defenses. Another crucial problem is an internal arrangement of wing-hull since it does not fully fit for locating all necessary elements of an aerial vehicle, such, in the first place, as the power plant, warhead and large-size radio-electronic devices. The presented work focuses mainly at the cruise missiles of a “flying wing” type allocation in the internal bays of a carrier (external arrangement). Several design options of the exterior, capable of solving this problem, were highlighted. They are as follows: accommodation by stack across the weapon bay, the wing folding, and a concept with the developed center wing-hull. Merits and demerits of these options were considered. Height-to-width aspect ratios of the weapon bay necessary for the most effective allocation of a cruise missile of the “flying wing” type was studied. These ratios differ greatly from those of attack aircraft of the traditional arrangement, but they fit perfectly the arrangement inside the next generation strategic bombers (B-21, PAK DA, H-20) under development at present.

Keywords:

cruise missile, flying wing, all-wing, wing folding, cranked kite

References

  1. Markovskii V., Perov K. Nauka i tekhnika, 2010, no. 2, pp. 30 – 38; no. 3, pp. 30 – 38; no. 4, pp. 38 – 41.

  2. Moroz S.G. Nauka i tekhnika, 2016, no. 8, pp. 36 – 43.

  3. Guseinov A.B., Trusov V.N. Proektirovanie malozametnykh letatel’nykh apparatov (Stealth vehicles design), Moscow, MAI, 2014, 288 p.

  4. Guseinov A.B., Nizov D.E. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53564

  5. Northrop J.K. The development of all-wing aircrafts // 35th Wilbur wright memorial lecture. Northrop Nurflügels, available at: http://www.nurflugel.com/Nurflugel/Northrop/northrop.html

  6. Liebeck R.H. Design of the blended wing body subsonic transport, Journal of Aircraft, 2004, vol. 41, no 1, pp. 97 – 104, doi: 10.2514/1.9084.

  7. Sobolev D.A. Stoletnyaya istoriya “letayushchego kryla” (Centennial history of “flying wing”), Moscow, RUSAVIA, 1998, 288 p.

  8. Lemko O.L. “Letayushchie kryl’ya”. Istoriya i vozmozhnye puti razvitiya (“Flying wings”. History and potential ways of development), Kiev, NTs VVS VSU, 2001, 90 p.

  9. JB Series (JB-1 through JB-10). Directory of U.S. Military Rockets and Missiles, available at: http://www.designation-systems.net/dusrm/app1/jb.html

  10. Ahmad Abdulkarim Alsahlan, Thurai Rahulan. Aerofoil design for unmanned high-altitude aft-swept flying wings, Journal of Aerospace Technology and Management, 2017, no. 9 (3), pp. 335 – 345.

  11. Amy Butler, Bill Sweetman. Secret New UAS Shows Stealth, Efficiency Advance, Aviation Week & Space Technology, 2013, available at: http://aviationweek.com/defense/secret-new-uas-shows-stealth-efficiency-advances

  12. Yalin Pan, Jun Huang, Feng Li, and Chuxiong Yan. Integrated Design Optimization of Aerodynamic and Stealthy Performance for Flying Wing Aircraft, Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. II, IMECS 2017, March 15 – 17, 2017, Hong Kong, available at: http://www.iaeng.org/publication/IMECS2017/IMECS2017_pp1051-1056.pdf

  13. Joseph R. Chambers. Innovation in flight: research if the NASA Langley Research Center on revolutionary advanced concepts for aeronautics, NASA, 2005, 389 p.

  14. BLACKJACK. Militaryrussia. Tu-160: otechestvennaya voennaya tekhnika (posle 1945g), available at: http://militaryrussia.ru/blog/category/265/topic/topic/topic/index-288.htmlKozhevnikovD.D.

  15. Kozhevnikov D.D. Patent SU 2015135212/03, 10.10.2016.

  16. Supersonic Flying Wing Nabs $100,000 from NASA space.com. August 30, 2012. available at: https://www.space.com/17393-supersonic-flying-wing-nasa.html

  17. Safe Operation of X-45A Weapons Bay Door Verified. NASA, available at: https://www.nasa.gov/centers/dryden/multimedia/imagegallery/X-45A/EC03-0047-3.html

  18. Bedretdinov I. Udarno-razvedyvatel’nyi samolet T-4 (T-4 strike and reconnaissance aircraft), Moscow, Izdatel’skaya gruppa “Bedretdinov i Ko”, 2005, 248 p.

  19. Moroz S.G. Nauka i tekhnika, 2016, no. 3, available at: http://naukatehnika.com/nash-otvet-chemberlenu.html

  20. Novyi kitaiskii strategicheskii bombardirovshchik N-20 gotov, available at: https://zh.wikipedia.org/wiki/%E8%BD%B0-20


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход