Ensuring technological and performance characteristics of products from titanium alloys by method of acoustical emission

Design, construction and manufacturing of flying vehicles


Аuthors

Remshev E. Y.*, Danilin G. A., Titov A. V.**, Ermolenkov P. A.***

Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia

*e-mail: Remshev@mail.ru
**e-mail: sapreu@yandex.ru
***e-mail: sfot96@gmail.com

Abstract

The article analyses the possibility of employing a method of acoustical emission for revealing external and internal defects in metal parts, and predicting relaxational properties of mechanisms’ elastic elements while static, dynamic and cyclic loading in the course of long-term operation.

Method of acoustic emission (AE) is the most promising non-destructive method for disk spring quality control. It allows detecting various defects in the products under the workload and predict stability (or instability) of performance indicators, including propensity to relaxation.

Elastic elements and springs of different purpose are widely used in various mechanisms, such as shock absorbers, energy storage devices and actuators, operating under complex cyclic conditions under dynamic and conditionally static loading. The VT23 titanium alloy microstructure evaluation criteria based on the level of acoustic emission signals were established either.

The regularities of acoustic emission signals level changing depending on the defects presence and development, relaxational withstandability and microstructure of disk springs made of spring steel and titanium alloy at the stage of their fabrication and pre-operational testing were established based on the experimental studies. The VT23 titanium alloy microstructure evaluation criteria based on the level of acoustic emission signals were established as well.

Two-factor mathematical prediction model for relaxation disk springs (made of 60S2A steel or VT23 titanium alloy) stability prediction depending on the level of acoustic emission signals level at the stage of gripping in the course of long-term operation was constructed.

Recommendations on practical application of the research findings were developed, and scientifically substantiated method for disk springs of steel and titanium alloys relaxational strength predicting was designed based on the established regularities.

Keywords:

titanium alloys, acoustic emission, relaxational withstandability, disk springs

References

  1. Danilin G.A., Titov A.V., Remshev E.Yu. II Obshcherossiiskaya molodezhnaya nauchno-tekhnicheskaya konferentsiya “Molodezh’. Tekhnika. Kosmos”. Tezisy dokladov. (Saint-Petersburg, 17-19 marta 2010), Saint-Petersburg, BGTU, 2010, pp.163 – 167.

  2. Danilin G.A., Titov A.V., Remshev E.Yu. Metalloobrabotka, 2011, no. 2. pp. 17 – 21.

  3. Bunina N.A. Ustroistvo dlya ispytaniya obraztsov pri slozhnykh napryazhennykh sostoyaniyakh (Sample testing facility at complex strained states), Leningrad, LNTsNTI, 1989, 4 p.

  4. Stoev P.I., Papirov I.I. Vestnik Khar’kovskogo natsional’nogo avtomobil’no-dorozhnogo universiteta, 2006, no. 33, pp. 95 – 97.

  5. Filonenko S.F. Vostochno-Evropeiskii zhurnal peredovykh tekhnologii, 2015, vol. 2, no. 5 (74), pp. 60 – 64.

  6. Kalugina M.S., Remshev E.Yu., Danilin G.A. et al. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 185 – 196.

  7. Remshev E.Yu., Danilin G.A., Vorob’eva G.A., Kuznetsov V.V. Metally, 2017, no. 1, pp. 43 – 48

  8. Glazunov S.G., Kolachev V.A Titanovye splavy. Metallografiya titanovykh splavov (Titanium alloys. Titanium alloys metallography), Moscow, Metallurgiya, 1980, 464 p.

  9. Popova L.E., Popov A.A. Diagrammy prevrashcheniya austenita v stalyakh i β-rastvora v titanovykh splavakh (Diagrams of austenite transformation in steels and β-solution in titanium alloys), Moscow, Metallurgiya, 1991, 500 p.

  10. Maistrov V.M. Formirovanie struktury vysokoprochnogo splava VT23 pri termicheskoi obrabotke i obosnovanie sposobov povysheniya ego mekhanicheskikh svoistv (VT23 high-strength alloy structure formation while thermal processing and substantiation of the ways of its mechanical properties increasing). Abstract of doctor’s thesis, Moscow, VIAM, 1986, 24 p.

  11. Remshev E.Yu. Metalloobrabotka, 2012, no. 4, pp. 27 – 33.

  12. Chakraborty S. Shaw A. Crack propagation in bi-material system via pseudo-spring smoothed particle hydrodynamics, International Journal of Computational Methods in Engineering Science and Mechanics, 2014, no. 3, pp. 294 – 301.

  13. Li S.J., Cui T.C., Li Y.L., Hao Y.L., Yang R. Ultrafine-grained ß-type titanium alloy with nonlinear elasticity and high ductility, Journal Applied Physics Letters, 2008, 92, 043128 (2008), doi: 10.1063/1.2839594

  14. Wang Q., Li Z.H., Sun D.L. Сompression characteristic and tensile property in an (alpha+beta)-type titanium alloy at high temperature, Journal Key Engineering Materials, 2005, no. 297, pp. 1439 – 1445.

  15. Yilmazer H., Niinomi M., Cho K., Nakai M., Hieda J., Sato S., Todaka Y. Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion, Journal Acta Materialia, 2014, no. 80, pp. 172 – 182.

  16. Sherman, A.M., Allison J.E. Potential for automotive applications of titanium alloys, International Congress and Exposition, 1986, Feb. 24-28, SAE, Warrendale, PA, Paper 860608.

  17. 17. Khorev A.I. Aviatsionnye materialy i tekhnologii, 2002, no. 2, pp. 11 – 32.

  18. Lubkov N.V., Spiridonov I.B., Stepanyants A.S. Trudy MAI, 2016, no. 85, available at: http://trudymai.ru/eng/published.php?ID=67501

  19. Hamu G.B., Eliezer D., Wagner L., Barel E. The effect of heat treatment and hcf performance on hydrogen trapping mechanism in timetal LCB alloy, Journal of Alloys and Compounds, 2009, no. 1-2, pp. 77 – 86.

  20. Ostroumov V.P. Effect of shot blasting on, stress relaxation in springs, Journal Metal Science and Heat Treatment, 1965, no. 11, pp. 701 – 702.

  21. Dudarev E.F., Pochivalova G.P., Nikitina N.V. Microplastic deformation of polycrystals during cyclic loading, Soviet Physics Journal, 1990, no. 3, pp. 227 – 230.

  22. Bogorosh A., Voronov S., Roizman V., Bubulis A., Vyšniauskiene Ž. Defect diagnostics in devices via acoustic emission, Journal of Vibroengineering, 2009, no. 4, pp. 676 – 683.

  23. Gheorghies C., Thompson M. Characteristics of acoustic emission signal specific to isolated cracks triggered by scratch tests in stainless steel coatings, Journal of Adhesion Science and Technology, 2008, no. 2, pp. 2003 – 2011.

  24. He Y.Y., Zhang X.M., Friswell M.I. Defect diagnosis for rolling element bearings using acoustic emission, Journal of Vibroengineering Acoust, 2009, no. 131, pp. 10.

  25. Carpinteri A., Lacidogna G., Niccolini G., Puzzi S. Critical defect size distributions in concrete structures detected by the acoustic emission technique, Journal Meccanica, 2008, no. 43, pp. 349 – 363.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход