The study of hydraulic characteristics of a model gel-like substance based on carbohydrates

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Bogdanovich A. B.*, Polyakov V. A., Volkov E. N.

Corporation Moscow Institute for Heat Technology, 10, Beryozovaya alleya St., Moscow, 127273, Russia

*e-mail: racer3000.92@mail.ru

Abstract

In this article, an experimental study of the flow of a model gel-like substance consisting of hydrocarbons is carried out. The gel-like substance is used in the supply systems of advanced aircraft. The main task of the study is obtaining dependence volumetric flow rate of the model gel-like substance fr om a supply pressure and a temperature.

The dynamic viscosity of the model gel-like substance is 100 Pa·s at the temperature of + 5ºС.

The main equipments for an experiment are a displacement device of piston-type and a universal testing machine. Experiments were carried out with the model gel-like substance in the temperature range of + 3ºС... + 35ºС.

The graphs of the dependence volumetric flow rate of the gel-like substance from the supply pressure were based on the experimental data obtained.

Empirical dependences of the volumetric flow rate on the supply pressure and the temperature of the model gel-like substance were obtained.

The volumetric flow rate of the model gel-like substance is described by a power-law:

QD = kT ⋅ µ ⋅ Fnz ⋅ (ρD/98066,5)n,

wh ere kТ = f (TН) – is an empirical coefficient that takes into account the dependence of the viscosity of the model gel-like substance on the temperature, m / s;

m – a consumption coefficient of the throttle, –;

Fnz – a minimum area of an orifice throttle, m2;

pD – the supply pressure, Pa;

n – an exponent, –.

As a result of the work methodological approach was proposed and a methodology for the calculation and experimental determination of the flow characteristics of the model gel-like substance that imitate the viscosity and a composition of gel-like fuels was developed. The error in determining flow characteristics of gel-like substances does not exceed 1%.

Empirical dependences of the volumetric flow rate from the supply pressure for the model gel-like substance were defined in the temperature range from + 3ºС to + 35ºС and the supply pressure from 0.02 MPa to 6 MPa. A discrepancy of experimental and empirical dependences is not higher than 6%.

The dependence of the volumetric flow rate on the supply pressure is a power-law. The nature of equation changes depending on the viscosity of the substance.

Keywords:

model gel-like substance, displacement device of a piston-type, throttle, viscosity, tempera

References

  1. Karasev V.N., Levin V.M. Trudy MAI, 2013, no 64, available at: http://trudymai.ru/eng/published.php?ID=36551

  2. Zuev V.S., Makaron V.S. Teoriya pryamotochnykh i raketno-pryamotochnykh dvigatelei (Theory ramjets and rocket ramjets), Moscow, Mashinostroenie, 1971, 368 p.

  3. Obnosov B.V., Sorokin V.A., Yanovskii L.S. et al. Konstruktsiya i proektirovanie kombinirovannykh raketnykh dvigatelei na tverdom toplive (A structure and design of combined rocket engines on solid fuel), Moscow, Izd-vo MGTU im. N. E. Baumana, 2012, 303 p.

  4. Fakhrutdinov I.Kh., Kotel’nikov A.V. Konstruktsiya i proektirovanie raketnykh dvigatelei tverdogo topliva (A structure and design of rocket engines on solid fuel), Moscow, Mashinostroenie, 1987, 328 p.

  5. Lipanov A.M., Aliev A.V. Proektirovanie raketnykh dvigatelei tverdogo topliva (Design of rocket engines on solid fuel), Moscow, Mashinostroenie, 1995, 400 p.

  6. Vinitskii A.M. Raketnye dvigateli na tverdom toplive (Rocket engines on solid fuel), Moscow, Mashinostroenie, 1973, 348 p.

  7. Panin S.D., Rumyantsev B.V., Shishkov A.A. Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva (Working processes in rocket engines on solid fuel), Moscow, Mashinostroenie, 1989, 420 p.

  8. Rogov N.G., Ishchenko M.A. Smesevye raketnye tverdye topliva: komponenty. Trebovaniya. Svoistva (Mixed rocket solid fuels: components. Requirements. Properties: studies), Saint-Petersburg, SPbGTI, 2005, 195 p.

  9. Avdienko A.A., Grigor’yan S.S., Finagin A.V. Rabochie protsessy i proektirovanie raketnykh dvigatelei na pastoobraznom toplive (Working processes and design of rocket engines on pastelike fuel. Manual), Saratov, Saratovskoe VVKIU raketnykh voisk, 1996, 125 p.

  10. Shai R. Benveniste N. The Status of Gel Propellants, Combustion of Energetic Materials, 2000, 24 p.

  11. Teipel U., Foerter-Barth U. Mechanical Properties of Gel Propellants with Nanoparticles, Journal of Energetic Materials, 2004, vol.22, no. 2. pp. 69 – 82.

  12. Shai R., Peterz Arie, Benveniste N. Rheological Matching of Gel Propellants, Journal of Propulsion and Power, 2010, vol. 26, no. 2, pp. 376 – 378.

  13. Vinogradov G.V., Malkin A.Ya. Reologiya Polimerov (Rheology of Polymers), Moscow, Khimiya, 1977, 440 p.

  14. Orlov B.V., Mazing G.Yu. Termodinamicheskie i ballisticheskie osnovy proektirovaniya raketnykh dvigatelei na tverdom toplive (Thermodynamic and ballistic fundamentals of projection of solid fuel rocket engines), Moscow, Mashinostroenie, 1979, 392 p.

  15. Dorofeev A.A. Osnovy teorii teplovykh raketnykh dvigatelei (Fundamentals of heat rocket engines theory), Moscow, Izd-vo MGTU im. N.E. Baumana, 2010, 463 p.

  16. Abugov D.I., Bobylev V.M. Teoriya i raschet raketnykh dvigatelei tverdogo topliva (Theory and calculation of solid fuel rocket engines), Moscow, Mashinostroenie, 1987, 272 p.

  17. Sorokin V.A., Yanovskii L.S., Kozlov V.A., Surikov E.V. et al. Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh (Rocket ramjets on solid and pastelike fuels), Moscow, Fizmatlit, 2010, 320 p.

  18. Maydanuk D.V. Bondarenko S.G., Ivanchenko A.N., Protsan Yu.V. Rocket propulsion using unitary paste-like propellant. Analysis of mass efficiency for applications in the composition of landing units and upper stages of launch vehicles // Proc. of 60-th International Astronautical Congress (IAC-09-C4.2), 12-16 October 2009, DaeJeon, Republic of Korea, pp. 6.

  19. Uilkinson U.L. Nen’yutonovskie zhidkosti (Non-Newtonian liquids), Moscow, Mir, 1964, 216 p.

  20. Shul’man Z.P., Berkovskii P.M. Pogranichnyi sloi nen’yutonovskikh zhidkostei (Boundary layers of non-Newtonian liquids), Minsk, Nauka i tekhnika, 1966, 239 p.

  21. Shishchenko R.I., Es’man B.I., Kondratenko P.I. Gidravlika promyvochnykh zhidkostei (Flushing liquids hydraulics), Moscow, Nedra, 1976, 294 p.

  22. Vulis L.A., Kashkarov V.P. Teoriya strui vyazkoi zhidkosti (Viscous liquid jet theory), Moscow, Nauka, 1965, 432.

  23. Palin D.G., Galustov V.S. Osnovy tekhniki raspylivaniya zhidkostei (Fundamentals of liquids atomization technique), Moscow, Khimiya, 1984, 248 p.

  24. Rahimi S., Natan B. The Flow of Gel Fuels in Tapered Injectors, Journal of Propulsion and Power, 2000, vol. 16, no. 3, pp. 458 – 471.

  25. Rahimi S., Natan B. Numerical Solution of the Flow of Power Law Gel Propellants in Converging Injectors, Propellants, Explosives, Pyrotechnics, 2000, vol. 25, no. 4, pp. 203 – 212.

  26. Bashta T.M. Raschety i konstruktsii samoletnykh gidravlicheskikh ustroistv (Calculations and structu of aircraft hydraulic devices), Moscow, Oborongiz, 1961, 475 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход