Identification of models and adaptive filtering of inertial sensors noises

Navigation instruments


Chernodarov A. V.1*, Ivanov S. A.2**

1. Leading Researcher of “NaukaSoft” Experimental Laboratory, 9, Godovikova str., building 1, Moscow, 129085, Russia
2. Ramenskoye Instrument-Making Plant, 39, Mikhalevich str., Ramenskoe, Moscow Region, 140100, Russia



This article is devoted to the problem of reliability increasing of of inertial measurement units (IMU) error estimation by an extended Kalman filter (EKF). This problem is associated with the noise models of inertial sensors and real processes inadequacy. Gyroscopes and accelerometers are considered as inertial sensors. It is known, that the models inaccuracy and other causes of methodical and instrumental character result in the EKF divergence. The EKF divergence manifests itself in the fact that the actual estimation errors considerably differ from their predicted mean square values obtained while solving the Riccati equation for the covariance matrix. It should be noted, that the actual estimation errors come to light only at the stage of mathematical simulation. In the known works the models inadequacy is compensated by the corresponding EKF parameters adjustment over the renovative sequence. This renovative sequence is the difference between actual and predicted observations. The predicted observations are formed by estimating the IMU errors. However, in real operating conditions, due to the errors of external measuring tools or lack thereof, such adjustment is not always possible. In addition, there are approaches to estimation of statistical characteristics of inertial sensors by the Allan method. This method allows estimate the stability of errors on the moving intervals of averaging. However, such approaches do not associate with the EKF parameters tuning. Thus, their application does not ensure the EKF adaptation in real operating conditions. The scientific originality of the proposed work is associated with the addition of procedures for the noise models of inertial sensors tuning to the known EKF adaptation algorithms. The authors propose to perform the adjustment of models based on structural-parametric identification by of correlation processing of the sensors error estimates. Such processing can be performed both in real time, and according to the data of onboard recording devices. The developed algorithms allow take account for the change in accuracy and dynamic characteristics of inertial sensors through the corresponding coefficients of the IMU errors. To implement the proposed identification technology, the errors of inertial sensors should be included in the estimated parameters vector. The performed studies revealed that when the EKF is included in the IMU error estimation circuit, it is necessary to perform not only the factory bench calibration of inertial sensors, but also the identification of their noise models. The article presents the results of experiments confirming the expediency of noises identifying models of inertial sensors while operation.


inertial navigation system, sensors, noise models, identification, Kalman filter


  1. Veremeenko K.K., Koshelev B.V., Solov’ev Yu.A. Novosti navigatsii, 2010, no. 4, pp. 32 – 41.

  2. Emel’yantsev G.I., Stepanov A.P. Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated satellite inertial orientation and navigation systems), Saint-Petersburg, Kontsern TsNII “Elektropribor”, 2016, 394 p.

  3. Avgustov L.I., Babichenko A.V., Orekhov M.I., Sukhorukov S.Ya., Shkred V.K. Navigatsiya letatel’nykh apparatov v okolozemnom prostranstve (Aircraft navigation in near-Earth space), Moscow, Nauchtekhlitizdat, 2015, 592 p.

  4. Noureldin A., Karamat T., Georgy J. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration, Heidelberg, Springer-Verlag, 2013, 314 p.

  5. Luk’yanov D.P., Raspopov V.Ya., Filatov Yu.V. Prikladnaya teoriya giroskopov (Applied theory of gyroscopes), Saint-Petersburg, Kontsern TsNII “Elektropribor”, 2015, 316 p.

  6. Udd E. Volokonno-opticheskie datchiki. Vvodnyi kurs dlya inzhenerov i nauchnykh rabotnikov (Fiber Optic Sensors. An Introduction Course for Engineers and Scientist), Moscow, Tekhnosfera, 2008, 520 p.

  7. Klimov D.M., Zhuravlev V.F., Zhbanov Yu.K. Kvartsevyi polusfericheskii resonator. Volnovoi tverdotel’nyi giroskop (Quartz hemispherical resonator. Wave solid state gyroscope), Moscow, Izd-vo “Kim L.A.”, 2017, 194 p.

  8. Matveev V.V., Raspopov V.Ya. Pribory i sistemy orientatsii, stabilizatsii i navigatsii na MEMS – datchikakh (Devices and systems of orientation, stabilization and navigation on MEMS sensors), Tula, Izd-vo TulGU, 2017, 225 p.

  9. Liu Y., Shi M., Wang X. Progress on Atomic Gyroscope, 24th St. Petersburg International Conference on Integrated Navigation Systems, Saintt-Petersburg, CSRI Elektropribor, 2017, pp. 344 – 352.

  10. Babich O.A. Obrabotka informatsii v navigatsionnykh kompleksakh (Data processing in navigation complexes), Moscow, Mashinostroenie, 1991, 512 p.

  11. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Vvedenie v teoriyu otsenivaniya (Fundamentals of theory of estimation with applications to of navigational information processing problems), Saint-Petersburg, Kontsern TsNII “Elektropribor”, 2010, Ch.1., 509 p.

  12. Kalman R.E. A New Approach to Linear Filtering and Prediction Problems, Trans. ASME, ser. D, Journal of Basic Engineering, 1960, vol. 82, pp. 35 – 45.

  13. Maybeck P.S. Stochastic Models, Estimation and Control, Academic Press, New York, 1982, vol. 2, 709 p.

  14. Zarchan P., Musoff H. Fundamentals of Kalman Filtering. Progress in Astronautics and Aeronautics, Reston: AIAA, 2005, vol. 208, 764 p.

  15. Fitzgerald R.J. Divergence of the Kalman Filter, IEEE Trans. on Automatic Control, 1971, vol.16, no. 6, pp. 736 – 747.

  16. Chin L. Advances in Adaptive Filtering. In Control and Dynamic Systems, New York, Academic Press, 1979, pp. 278 – 356.

  17. Souza C. E., Xie L. Robust  Η Filtering. In Control and Dynamic Systems, New York, Academic Press, 1994, pp. 323 – 377.

  18. Chernodarov A.V. An Η Technology for Control of the Integrity of the Kalman Type of Estimating Filters with the Use of Adaptive Robust Procedures, Preprints, 1st IFAC Conference on Modeling, Identification and Control of Nonlinear Systems, Saint Petersburg, June 24 – 26, 2015, pp. 358 – 363.

  19. Allan, D. W. Historicity, Strengths, and Weaknesses of Allan Variances and Their General Applications, 22th St. Petersburg International Conference on Integrated Navigation Systems, Round table “Methods for determining the characteristics of errors in navigation sensors”, St. Petersburg, CSRI Elektropribor, 2015, pp. 507– 524.

  20. Akimov P.A., Derevyankin A.V., Matasov A.I. Garantiruyushchii podkhod i Ι1 – approksimatsiya v zadachakh otsenivaniya parametrov BINS pri stendovykh ispytaniyakh (Guaranteed approach and l1-norm approximation in the problems of SINS parameter estimation under bench testing), Moscow, Izd-vo Moskovskogo universiteta, 2009, 280 p.

  21. Vavilova N.B., Vasineva I.A., Parusnikov N.A. Trudy MAI, 2015, no. 84, available at:

  22. Matasov A.I., Tikhomirov V.V. Trudy MAI, 2016, no. 89, available at:

  23. Titterton D.H., Weston J.J. Strapdown Inertial Navigation Technology. Progress in Astronautics and Aeronautics, AIAA, Reston, 2004, vol. 207, 558 p.

  24. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh system (Fundamentals of strapdown inertial navigation systems construction), Saint-Petersburg, Kontsern TsNII “Elektropribor”, 2011, 280 p.

  25. Tikhonov V.I., Kharisov V.N. Statisticheskii analiz i sintez radiotekhnicheskikh ustroistv i system (Statistical analysis and synthesis of radio engineering devices and systems), Moscow, Radio i svyaz’, 2004, 608 p.

  26. Chernodarov A.V. Kontrol’, diagnostika i identifikatsiya aviatsionnykh priborov i izmeritel’no-vychislitel’nykh kompleksov (Monitoring, Diagnostics, and Identification of Aviation Instruments and Measuring-and-Computing Complexes), Moscow, Nauchtekhlitizdat, 2017, 300 p.

  27. Sinitsyn I.N. Fil’try Kalmana i Pugacheva (Kalman and Pugachev filters), Moscow, Logos, 2007, 776 p.

  28. Klimov D.M. Inertsial’naya navigatsiya na more (Inertial navigation at sea), Moscow, Nauka, 1984, 118 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI