Phase locked loop of satellite communication systems receiving channels

Antennas, SHF-devices and technologies


Аuthors

Kuzmin R. E.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: kaesoron.1@mail.ru

Abstract

The article considers the receiving channels phase synchronization method of a satellite subscriber terminal with two receiving antennas. Such a method allows us to solve the problem of raising the signal level in the subscriber system against the background of noise. For the possibility of in-phase addition of signals of two channels before demodulation, it is necessary to eliminate the phase difference between them, which arises due to the spacing of the antenna pair elements by at least a quarter of the wavelength. It guarantees the independence from noise in each of them. To eliminate the phase difference, a phase-locked loop (PLL) system of receiving channels with a quadrature modulator is employed. Such scheme is a full-fledged substitute for the phase-shifter or digital phase rotation algorithm. While working with the system model, an imitation model was constructed from two receiving channels of a satellite communication system with phase-locked auto-tuning. It is shown that the system allows increase the level of the valid output signal by implementing the PLL ring. The effect of the low-pass filter band on the system speed was studied, and the dependence of the phase error at the output from the signal-to-noise ratio was obtained. In the long term, this system can ensure the operation of both the receiving and transmitting parts of the communication module with the antenna array of several elements.

Keywords:

phased locked loop, phased-array antenna, quadrature, phase detector

References

  1. Shakhgil’dyan V.V., Lyakhovkin A.A. Sistemy fazovoi avtopodstroiki chastity (Systems of phased locked loops frequency), Moscow, Svyaz’, 1972, 447 p.

  2. Martirosov V.E. Optimal’nyi priem diskretnykh signalov TsSPI (Optimum reception of discrete signals), Moscow, Radiotekhnika, 2010, 208 p.

  3. Martirosov V.E., Alekseev G.A. Programming realization of system of phased locked loop, Trudy MAI, 2013, no. 71, available at: https://www.mai.ru/science/trudy/published.php?ID=47082

  4. Voskresenskii D.I., Kanashchenkov A.P. Aktivnye fazirovannye antennye reshetki (Active phased antenna arrays), Moscow, Radiotekhnika, 2004, 488 p.

  5. Dobychina E.M. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 3, pp. 69 – 76.

  6. Pei-Ling Chi, Chia-Ling Huang. Reconfigurable 1.5—2.5-GHz phase shifter with 360 relative phase-shift range and reduced insertion-loss variation, IEEE MTT – S, International Microware Simposium (IMS), Honolulu, 4-9 June 2017, pp. 897 – 899.

  7. Li Wenyuan, Wang Wan, Chen Yang. A 0.5–3GHz true-time-delay phase shifter for multi-antenna systems, IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, (IAEAC), Chongqing, 25.03 – 26.03, 2017, pp. 506 – 509.

  8. Mircea Dragoman, Martino Aldrigo, Gina Adam. Phased antenna arrays based on non-volatile resistive switches, IET Microwaves, Antennas & Propagation, 2017, vol. 11, issue 8, pp. 1169 – 1173.

  9. Ya-Qing Wen, Bing-Zhong Wang, Xiao Ding. Wide-beam circularity polarized microstrip magnetic-electric dipole antenna for wide angel scanning phased array, IEEE Antennas and wireless propagation letters, 2017, vol. 16, pp. 428 – 431.

  10. Pandhare R.A., Zade P.L., Abegaonkar M.P. Beam-steering in microstrip patch antenna array using DGS based phaseshifters at 5.2 GHz 2015, International conference on information processing (ICIP), 2015, pp. 239 – 243.

  11. Hidayat R., Rushedra., Ellisa Agustina. Digital beamforming of smart antenna in millimeter wave communications, International Conference on broadband communications, wireless sensors and powering (BCWSP), 2017, pp. 1 – 5.

  12. Gerhard F. Hamberger, Uwe Siart, Thomas F. Fibert. A dual-linearly polarized receive antenna array for digital beamforming in automotive use, IEEE Asia Pacific microwave conference (APMC), 2017, pp. 17 – 20.

  13. Narbudowicz A., Ammann M.J., Plotka M., Kulas L., Nyka K., Rzymowski M. Compact antenna for digital beamforming with software define radios, International symposium on antennas and propagation (ISAP), 2017, Phuket, Thailand, doi: 10.1109/ISANP.2017.8228737

  14. Pratumsiri T., Janpugdee P., Flexible printed antenna for digital TV reception, International symposium on antennas and propagation (ISAP), 2017, pp. 1 – 2.

  15. Li A., Masouros C., Sellathurai M., Analog-digital beamforming in the MU-MISO downlink by use of tunable antenna loads, IEEE transaction on Vehicular technology, 2018, vol. 67, Issue 4, pp. 3114 – 3129.

  16. Dinis D.C., Oliveira A.S.R., Vieira J. All-digital transmitter based antenna array with reduced hardware complexity, IEEE MTT – S International microwave symposium (IMS), 2017, pp. 153 – 156.

  17. Haroun M.H., Ayad H., Jomaa J., Fadlallah M., Jomaa K., Fabres M.C., Bataller M.F. Sampled antenna array digital beamforming for LTE-advanced, International conference on High performance computing and simulation (HPCS), 2017, pp. 282 – 287

  18. Chiou Shiue-Chen, Lin Yu-Ming, Tai Tzu-Chun, Chen Yung-Wei, Hung Cheng-Yuan, Wu Hung-Wei, Chang Shoou-Jin, Wang Yeong-Her, Su Yan-Kuin. Hight efficiency transparent digital television antenna based on nano structured thin film coating technology, International conference on Applied system innovation (ICASI), 2017, pp. 500 – 502.

  19. Jagadesh T., Sheela Rani B. Actualization of a phased array antenna utilizing digital beamforming, International conference on control instrumentation and computational technologies (ICCICCT), 2016, pp. 111 – 116.

  20. Khedekar S., Mukhopadhyay M. Digital beamforming to reduce antenna side lobes and minimize DOA error, International conference on signal processing communication, power and embedded systems (SCOPES), 2016, pp. 1578 – 1583.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход