Defects imitation in multilayer honeycomb structure from polymer composite materials by honeycomb filler underrating method

System analysis, control and data processing


Аuthors

Rusakov D. Y.*, Chernushin V. A.**

ORPE “Technologiya” named after A.G.Romashin, 15, Kievskoye shosse, Obninsk, Kaluga region, 249031, Russia

*e-mail: tigra47@gmail.com
**e-mail: ximik99911@yandex.ru

Abstract

Nondestructive control is utterly weak part of composite materials quality control. The most general non destructive control method of composite honeycomb structures is acoustic impedance method. To adjust defectoscope control parameters the sample with defects imitation is required.

The article compares the honeycomb underrating method for defects imitation and flat-bottom holes method. Advantages and disadvantages of both methods were analyzed.

The most general defects imitation method is flat-bottom holes method. However, this imitation method has a disadvantage. The defect area on sample larger becomes every time, than the defect area obtained from the mathematical model of this sample. With a honeycomb cell of a big size (the side length of 5 mm or more) this effect becomes rather crucial.

Another problem while applying imitation by flat-bottom holes method consists in impossibility of double-sided sample control. Thus, imitation of both sides is required, that makes the sample size much bigger.

Control of the sample while performing this this operation is realized by ID-91M acoustic impedance defectoscope. Extra control of the sample is performed via radiographic control.

A sample with two types of defect imitation was fabricated especially for this work. All in all, there were four defect imitators by flat-bottom holes method and four by honeycomb underrating method. The area of both pairs of imitators was equal in theory. Nevertheless, results of tests revealed that these areas are not equal. The area of imitators made by honeycomb underrating method was closer to the theoretical area of the defect.

As result of this work, we obtained data, confirming the advantage of the honeycomb underrating method compared to the flat-bottom holes method.

Keywords:

nondestructive testing, polymeric composite materials, defect imitation, free oscillation technique, impedance method

References

  1. Lange Yu.V. Akusticheskie nizkochastotnye metody i sredstva nerazrushayushchego kontrolya mnogosloinykh konstruktsii (Low frequency acoustic methods and means for nondestructive testing of multilayer structures), Moscow, Mashinostroenie, 1991, 272 p.

  2. Egorov V.N., Bakhtin A.G., Dobromyslov V.A. et al. Kontrol’. Diagnostika, 1999, no. 6, pp. 24 – 28.

  3. Murashov V.V. Kontrol’. Diagnostika, 2017, no. 3, pp. 4 – 10.

  4. Murashov V.V., Yakovleva S.I. Kontrol’. Diagnostika, 2017, no. 10, pp. 28 – 35.

  5. Lange Yu.V., Voropaev S.I., Muzhitskii V.F., Nefedov S.V. Defektoskopiya, 1996, no. 5, pp. 9 – 19.

  6. Lange Yu.V., Muzhitskii V.F., Nefedov S.V. Defektoskopiya, 1999, no. 1, pp. 55 – 64.

  7. Boitsov B.V., Vasil’ev S.L., Gromashev A.G., Yurgenson S.A. Trudy MAI, 2011, no. 49, available at: http://trudymai.ru/eng/published.php?ID=28061&PAGEN_2=2

  8. Rusakov D.Yu., Skomorokhov A.O. XXI Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Konstruktsii i tekhnologii polucheniya izdelii iz nemetallicheskikh materialov”. Tezisy dokladov. Obninsk, Kaluzhskaya oblast’, 5-7 oktyabrya 2016, pp. 133 – 134.

  9. Rusakov D.Yu., Skomorokhov A.O. XIII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Budushchee atomnoi energetiki”. Tezisy dokladov. Obninsk, Kaluzhskaya oblast’, 27-30 noyabrya 2017, pp. 195 – 197.

  10. Rusakov D.Yu., Skomorokhov A.O. VI Mezhdunarodnaya molodezhnaya nauchnaya shkola-konferentsiya, posvyashchennaya 75-letiyu NIYaU MIFI i 95-letiyu akademika N.G. Basova “Sovremennye problemy fiziki i tekhnologii”. Tezisy dokladov. Moscow, 17-21 aprelya 2017, pp. 291 – 292.

  11. Rusakov D.Y., Skomorohov A.O. Automation of analysis of thermographic images in diagnostics of honeycomb core structure states, Knowledge E Life Sciences. Dec. 2017, pp. 350 – 356.

  12. Gryzagoridis J., Findeis D. Tap testing of composites benchmarked with digital shearography, Insight, 2014, vol. 56, no. 1, pp. 35 – 38.

  13. Gryzagoridis J., Findeis D. Tap testing vs. Thermography. Mechanical Engineering Department; University of Cape Town, 10-13 July 2018, available at: http://www.ndt.net/article/ndtnet/2016/1_Gryzagoridis.pdf

  14. Wu H., Siegel M. Correlation of Accelerometer and Microphone Data in the “Coin Tap Test”, IEEE Transactions on Instrumentation and Measurement, 2000, vol. 49, issue 3, pp. 493 – 497.

  15. Kim S.J., Kim T.U. Damage detection in sandwich structure using tap test, 45th International Congress and Exposition on Noise Control Engineering, Hamburg, Germany, 21-24 August 2016, pp. 4299 – 4303.

  16. Cawley P., Adams R.D. The Mechanics of the Coin-Tap Method of Non-Destructive Testing, Journal of Sound and Vibration, 1988, vol. 122, pp. 299 – 316.

  17. Cawley P., Adams R.D. Sensitivity of the Coin-Tap Method of Non-Destructive Testing, Materials Evaluation, 1989, vol. 47, pp. 558 – 563.

  18. Cawley P. High Frequency Coin-Tap Method Of Non-Destructive Testing, Mechanical Systems and Signal Processing, 1991, no. 5(1), pp. 1 – 11.

  19. Cheng C., Sansalone M. The impact-echo response of concrete plates containing delaminations: numerical, experimental and field studies, Materials and Structures, 1993, no. 26, pp. 274 – 285.

  20. Pratt D., Sansalone M. Impact-echo signal interpretation using artificial intelligence, ACI Materials Journal, 1992, vol. 89, no. 2, pp. 178 – 187.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход