Efficiency increasing of numerical modeling of turbulent flows by application of hybrid meshes with structured multi-scaled blocks and unstructured insertions

Mathematica modeling, numerical technique and program complexes


Аuthors

Usachov A. E.1*, Mazo A. B.2**, Kalinin E. I.2***, Isayev S. A.3****, Baranov P. A.4*****, Semilet N. A.1******

1. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
2. Kazan Federal University, 35, Kremlevskaya str., Kazan, 420008, Russia
3. Saint-Petersburg State University of Civil Aviation, 38, Pilotov str., St. Petersburg, 196210, Russia
4. Battery company “RIGEL”, Popova str., Saint-Petersburg, 197376, Russia

*e-mail: usachov_a@mail.ru
**e-mail: abmazo1956@gmail.com
***e-mail: kalininei@yandex.ru
****e-mail: isaev3612@yandex.ru
*****e-mail: paul-baranov@yandex.ru
******e-mail: nikita-semilet@rambler.ru

Abstract

Method of hybrid meshes was developed for the stationary and non-stationary internal turbulent incompressible flows numerical modeling. Numerical modeling of the internal turbulent flow in a flat parallel duct with cylindrical cavern located on its lower wall was performed to validate accuracy and stability of the method. The goal of the studies consisted in verifying the proposed methodologies realized in VP 2/3 code [6] (based on the hybrid mesh technology [7] and turbulence differential models) on various meshes. Three kinds of meshes such as a coarse hybrid mesh, a refined hybrid mesh with non-structured block and non-structured triangular mesh were analyzed.

An experimental setup to study 2D plane flow in parallel channel with circular cave was built in the Institute of Mechanics, Moscow State University [3]. Viscid incompressible flow was studied in a flat parallel duct with cylindrical cavern located inside one of the duct walls. The Reynolds number was 1.3 × 105.

The modelling methodology and numerical approaches are based on solving Reynolds averaged Navier-Stokes (RANS) equations for incompressible fluid and hybrid grids concept. While quantization of the convective flows through the control volume facets, the counter-flow schemes of a second order accuracy were applied [11].

The pressure was computed by semi-implicit methods (SIMPLEC), based on the SIMPLE procedure proposed by Patankar [10]. The VP2/3 bundled software, which is successfully employed for numerical modelling of various heat and mass exchange problems with viscous fluid and gas flows was developed based on this technique. Computations with different hybrid meshes are compared to the experimentally measured values of the velocity horizontal component in the center of the cavern and static pressure on the lower wall of the duct.

The verification and validation of numerical modelling of a flow in the duct with cylindrical cavern were performed with the differential model of Menter’s SST turbulence. Computed and experimental data demonstrated a close agreement.

Keywords:

Computational Fluid Dynamics, turbulence flow, turbulence model, hybrid meshes

References

  1. Ermishin A.V., Isaev S.A. Upravlenie obtekaniem tel s vikhrevymi yacheikami v prilozhenii k letatel’nym apparatam integral’noi komponovki (chislennoe i fizicheskoe modelirovanie) (Flow-around control of bodies containing vortex cells as applied to aircraft with integrated layout (numerical and physical modeling) Moscow, MGU, 2003, 360 p.

  2. Larina E.V., Kryukov I.A., Ivanov I.E. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75565

  3. Fletcher K. Vychislitel’nye metody v dinamike zhidkostei (Computational methods in liquids dynamics), Moscow, Mir, 1991, vol. 1, 504 p.

  4. Shchukin A.V., Khabibullin I.I., Il’inkov A.V., Takmovtsev V.V. Trudy MAI, 2017, no. 95, available at: http://trudymai.ru/eng/published.php?ID=84395

  5. Roache P.J. Computational Fluid Dynamics. Hermosa, Albuquerque: N.M., 1976, 616 p.

  6. Isaev S.A., Baranov P.A., Usachov A.E. Multi-block computing technologies in the package VP2/3 on aerothermodynamics, LAP LAMBERT Academic Publishing, Saarbruecken, 2013, 316 p.

  7. Kalinin E.I., Mazo A.B., Isaev S.A. Composite mesh generator for CFD problems, IOP Conf. Series: Materials Science and Engineering, 2016, no. 158, 012047, doi:10.1088/1757-899X/158/1/012047.

  8. Baranov P.A., Guvernyuk S.V., Zubin M.A., Isaev S.A. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2000, no. 5, pp. 44 – 56.

  9. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Fluid and gas mechanics), Moscow, Nauka, 1987, 736 p.

  10. Patankar S. Numerical Heat Transfer and Fluid Flow, New York, Hemisphere Publishing Corporation, 1980, 152 p.

  11. Belov I.A., Isaev S.A., Korobkov V.A. Zadachi i metody rascheta otryvnykh techenii neszhimaemoi zhidkosti (Problems and methods for incompressible fluid separated flows calculating), Leningrad, Sudostroenie, 1989, 253 p.

  12. Baranov P.A., Guvernyuk S.V., Zubin M.A., Isaev S.A., & Usachov A.E. Application various models of turbulence for calculation of incompressible internal flows, TsAGI Science Journal, 2017, vol. 48, no. 1, pp. 1 – 13.

  13. Spalart P.R., Allmares S.R. A one-equation turbulence model for aerodynamic flows, AIAA. Paper 92-0439, 30 Aerospace Sciences Meeting and Exhibit, Reno, NV, 1992.

  14. T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. A New k-e Eddy-Viscosity Model for High Reynolds Number Turbulent Flows – Model Developmentand Validation, Computers Fluids, 1995, vol. 24, no.3, pp. 227 – 238.

  15. Menter F.R. Zonal two equation k-w turbulence models for aerodynamic flows, AIAA Paper, 1993, N93-2906, pp. 21.

  16. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model, Turbulence, Heat and Mass Transfer 4. Ed. K.Hajalic, Y.Nogano, M.Tummers, Begell House, Inc. 2003, pp. 625 – 632.

  17. Menter F.R., Langtry R.B., Likki S.R., Suzen Y.B., Huang P.G., and Volker S. Correlation Based Transition Model Using Local Variables. Part 1 – Model Formulation, ASME-GT2004-53452, 2004, pp. 413 – 422.

  18. Daly B.J., Harlow F.H. Transport Equations in Turbulence, Physics of Fluids, 1970, no. 13, pp. 2634 – 2649.

  19. Gibson M.M., Launder B.E., Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer, Journal of Fluid Mechanics, 1978, no. 86, pp. 491 – 511.

  20. Launder B.E. Second-Moment Closure: Present and Future? International Journal of Heat and Fluid Flow, 1989, vol. 10, no. 4, pp. 282 – 300.

  21. Launder B.E., Reece G.J., Rodi W. Progress in the Development of a Reynolds-Stress Turbulence Closure, Journal of Fluid Mechanics, April 1975, vol. 68, no. 3, pp. 537 – 566.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход