Spacecraft optimal control while forming an orbit of the Jupiter artificial satellite at the section of preliminary aerodynamic deceleration braking

Dynamics, ballistics, movement control of flying vehicles


Orlov D. A.*, Saitova A. G.**

Peoples' Friendship University of Russia, 6, Mikluho-Maklaya str., Moscow, 117198, Russia



The article studies the problem of a spacecraft (SC) movement control while executing preliminary aerodynamic deceleration in the atmosphere, and SC transition into transfer orbit after its outing the atmosphere, application of accelerating burn of reference speed in the apofocus of this orbit, and its transfer into the orbit of artificial satellite of Jupiter. Minimization of total power consumption on the orbits’ formation is employed as the basic criterion of optimality. Control laws for angle of attack and roll attitude on the atmospheric section of SC movement were determined through maximum principle of Pontryagin. Restrictions on maximum allowed values of temperature and overload, affecting the SC while the descend process in the atmosphere were accounted for.

A technique for the optimal control of a spacecraft while moving to Jupiter with account for flight dynamics specifics was developed. Using the Pontryagin maximum principle, the laws governing the angle of attack and roll at the atmospheric portion of the space vehicle motion are defined. Limitations on the maximum permissible temperatures and overloads that act on the spacecraft during the descent in the atmosphere are taken into account.

Assessment of the possibilities, and analysis of energy efficiency of this technique of putting the SC into the orbit of artificial Jupiter satellite depending on the altitudes of conditional perihelion point was performed. It was shown that for all considered initial data range the combined outing technique led to significant energetic advantage. Energy consumption is 15-20 times less, compared to propulsive technique for outing into orbits with aphelion point altitudes less than 6000 km for SCs with lift-to-drag ratio of 0.6.

The obtained results are of practical importance and may be used for the study of planets and their satellites, for the deep space in ballistic centers, scientific centers, and organizations, preoccupied with this issue.


spacecraft, artificial satellite of Jupiter, Jupiter, spacecraft control optimization, space, planet, entrance corridor, energy costs, satellite orbits forming


  1. Avduevskii V.S., Antonov B.M., Anfimov N.A. et al. Osnovy teorii poleta kosmicheskikh apparatov (Space vehicles theory of flight fundamentals), Moscow, Mashinostroenie, 1972, 345 p.

  2. Andrievskii V.V. Dinamika spuska kosmicheskikh apparatov na Zemlyu (Dynamics of spacecraft descent to the Earth), Moscow, Mashinostroenie, 1970, 235 p.

  3. Appazov R.F., Sytin O.G. Metody proektirovaniya traektorii nositelei i sputnikov Zemli (Methods for designing the trajectories of launch vehicles and Earth Trajectories design techniques of carriers and Earth satellites satellites), Moscow, Nauka, 1987, 440 p.

  4. Ivanov N.M. Martynov A.I. Dvizhenie kosmicheskikh letatel'nykh apparatov v atmosferakh planet (Spacecraft movement in the atmospheres of the planets), Moscow, Nauka, 1985, 384 p.

  5. Ivanov N.M. Martynov A.I. Upravlenie dvizheniem kosmicheskogo apparata v atmosfere Marsa (Spacecraft motion control in Mars atmosphere), Moscow, Nauka, 1977, 415 p.

  6. Ivanov N.M., Martynov A.I., Sokolov N.L. Kosmicheskie issledovaniya, 1979, vol. 17, no. 1, pp. 32 - 44.

  7. Ivanov N.M., Martynov A.I., Sokolov N.L. Kosmicheskie issledovaniya, 1980, vol. 17, no. 3, pp. 348 - 365.

  8. Ivanov N.M., Sokolov N.L., Osokina O.A. Kosmicheskie issledovaniya, 1998, vol. 36, no. 5, pp. 528 - 534.

  9. Kazakovtsev V.P., Koryanov V.V., Zo Min Tun. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2015, no. 5, pp. 38 - 46.

  10. Sokolov N.L. Trudy MAI, 2014, no. 75, available at:

  11. Sokolov N.L. Lesnoi vestnik, 2015, no. 3, pp. 37 - 44.

  12. Sokolov N.L. Trudy MAI, 2016, no. 87, available at:

  13. Shkadov L.M., Bukhanova R.S., Illarionov V.F., Plokhikh V.P. Mekhanika optimal'nogo prostranstvennogo dvizheniya letatel'nykh apparatov v atmosphere (Mechanics of aircraft optimal spatial motion in the atmosphere), Moscow, Mashinostroenie, 1972, 244 p.

  14. Eismont N.A. Kosmicheskie issledovaniya, 1972, vol. 10, no. 2, pp. 290 - 292.

  15. Yaroshevskii V.A., Ven Nguen. Uchenye zapiski TsAGI, 1997, vol. 28, no. 3-4, pp. 2 - 35.

  16. Allen A.Т., Eggers A.T. A study of the motion and aerodynamic heating of ballistic missiles entering the earth’s atmosphere at high supersonic speeds, NASA Rep., 1958, no. 1381, 16 p.

  17. Champan D.R. An Approximate analytical method for studying entry into planetary atmospheres. Technical Report NACA-TN-4276, Ames Aeronautical Laboratory, California, 1958, 103 p.

  18. David A. Spencer and Robert Tolson. Airobraking Cost and Risk Decisions, Journal of Spacecraft and Rockets, 2007, vol. 44, no. 6, pp. 1285 – 1293.

  19. Nachtsheim P.R., Tindle E., Howe J.T.J. Atmospheric entry into Jupiter's atmosphere in view of recent flyby results, Journal of Spacecraft and rockets, 1976, vol. 13, no. 2, pp. 120 – 122.

  20. Vivian Martins Gomes, Antonio Fernando Bertachini de Almeida Prado, and Justyna Golebiewska. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth, The Scientific World Journal, volume 2013, Article ID 489645, pp. 6, doi: 10.1155/2013/489645.

Download — informational site MAI

Copyright © 2000-2021 by MAI