Distribution technique of observation facilities fields of vision in the area of responsibility
Radiolocation and radio navigation
Аuthors
*, **Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia
*e-mail: vka@mil.ru
**e-mail: khodorvvv@mail.ru
Abstract
The article substantiates the proposal multi-channel panoramic optoelectronic means application for the air situation monitoring. The task on the fields of view distribution of the surveillance facilities in the area of responsibility was set. The article describes the specifics of algorithms building for the field of observation of a panoramic optical-electronic devices, depending on the form of fundamental of the of accommodation centers lattice of the fields of view of elements of the monitoring tools.
The described technique allows determine the best of all considered structure of photosensitive elements’ fields of view allocation and dimensions required for it at specified number of photosensitive elements and the size of area of responsibility. Analysis of computation results performed for various correlations of zone of responsibility size of fields of vision of observation facilities and different photosensitive elements number revealed the absence of the best lattice options. Hence, there is a need to automate the development of the best version of the lattice and calculate the parameters of the Dirichle region. This conclusion indicates the relevance of the presented algorithm.
Visual analysis of the options graphical representation of for covering the panoramic optical-electronic means area of responsibility suggests a certain redundancy of the panoramic optical-electronic means’ area of vision, which leads to the diversion of resources to control the space outside the designated area and, also to a decrease in efficiency as a result. With account for the potential range of he considered air objects detection and the their speeds range, efficiency is one of the critically important parameters, and in conditions of military operations it requires elimination or maximum possible reduction of all negative factors.
To eliminate the indicated disadvantage, the article proposed to optimize the coating by the fundamental parallelogram deformation. The comparison of the values of the coating coefficients obtained by two methods reveals the advantage of the technique, using deformation among the overriding options of the lattice of 12%.
Keywords:
area of responsibility, field of view, the fundamental parallelogram, the area of the Dirichle, coverage ratioReferences
-
Teodorovich N.N., Stroganova S.M., Abramov P.S. Naukovedenie, 2017, vol. 9, no. 1, available at: http://naukovedenie.ru/PDF/13TVN117.pdf
-
Godunov A.I., Shishkov S.V., Yurkov N.K. Nadezhnost’ i kachestvo slozhnykh sistem, 2014, no. 2(6), pp. 62 – 70.
-
Parkhomenko A.V., Ustinov E.M., Smogunov V.V., Fandeev V.P., Shishkov S.V., Ilyasov Yu.V., Ivasenko D.V. Patent na poleznuyu model’ № 86295, 27.08.09.
-
Umbitaliev A.A., Tsytsulin A.K., Smirnov V.D., Egel’skii I.D. Izvestiya vuzov. Priborostroenie. 2008, vol. 51, no. 10, pp. 76 – 78.
-
Bodrov V.N., Martynov V.N., Yakushenkova T.I., Prudnikov N.V., Sigeikin G.I. VII Nauchno-prakticheskaya konferentsiya “Sovershenstvovanie grazhdanskoi oborony v Rossiiskoi Federatsii”. Sbornik trudov. Moscow, Izd-vo “Tsentr strategicheskikh issledovanii grazhdanskoi zashchity Ministerstva Rossiiskoi Federatsii po delam grazhdanskoi oborony, chrezvychainym situatsiyam i likvidatsii posledstvii stikhiinykh bedstvii”, 2010, pp. 131 – 134.
-
Bodrov V.N., Prudnikov N.V. Oboronnaya tekhnika, 2004, no. 7/8, pp. 70 – 76.
-
Tarasov V.V., Yakushenkov Yu.G. Infrakrasnye sistemy “smotryashchego” tipa (Infrared systems of the «looking» type), Moscow, Logos, 2004, 444 p.
-
Bulychev Yu.G., Manin A.P. Matematicheskie aspekty opredeleniya dvizheniya letatel’nykh apparatov (Mathematical aspects of the aircraft movement determining) Moscow, Mashinostroenie, 2000, 256 p.
-
Tot L.F. Raspolozheniya na ploskosti, na sfere i v prostranstve (Locations on a plane, a sphere and in space), Moscow, Gosudarstvennoe izdatel’stvo fiziko-matematicheskoi literatury, 1958, 364 p.
-
Vavilov V.V., Ustinov A.V. Mnogougol’niki na reshetkakh (Polygons on lattices), Moscow, MTsNMO, 2006, 72 p.
-
Volf U., Tsisis G. Spravochnik po infrakrasnoi tekhnike. Fizika IK- izlucheniya (Handbook of IR technology. Physics of IR radiation: lane), Moscow, Mir, 1999, vol. 1, 606 p.
-
Lloid Dzh. Sistemy teplovideniya (Thermal imaging systems), Moscow, Mir, 1978, 416 p.
-
Dzhemison Dzh.E. Fizika i tekhnika infrakrasnogo izlucheniya (Physics and technology of infrared radiation), Moscow, Sovetskoe radio, 1965, 642 p.
-
McAulay A., Kadar I. Neural networks for adaptive shape tracking, Proceedings of SPIE, 1991, vol. 1408. pp. 119 — 134.
-
Chan L.A., Colberg A., Der S. et al. MIX and match for better vision, SPIE’s OE Magazine, April 2002, pp. 18 — 20.
-
Weech G.N.E., Gilbert J.A., Matthys D.R. A stereoscopic system for radial metrology, Proc. of the 2001 SEM Annual Conference and Exposition, Portland, Oregon, June 4-6, 2001, pp. 199 — 202.
-
Baccheschi N.L. Generation of a combined dataset of simulated radar and EO/IR imagery, Proceedings of SPIE, 2005, vol. 5806, pp. 88 — 99.
-
Lach S.R., Brown S.D., Kerekes J.P. Semi-automated DIRSIG scene modeling from 3D LIDAR and passive imaging sources, Proceedings of SPIE, 2006, vol. 6214, available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1024.4139&rep=rep1&type
-
Konvei Dzh., Sloen N. Upakovki sharov, reshetki i gruppy (Packing of balls, bars and groups), Moscow, Mir, 1990, vol. 1, 415 p.
-
Kofman A., Anri-Laborder A. Metody i modeli issledovaniya operatsii (Methods and models of operations research), Moscow, Mir, 1977, 432 p.
-
Kholl M. Kombinatorika (Combinatorics), Moscow, Mir, 1970, 424 p.
-
Alexandrov D., Kochetov Yu. Behavior of the ant colony algorithm for the set covering problem, Operations Research Proceedings, Magdeburg, September 1-3, 1999, (Berlin, Springer, 2000), pp. 255 — 260.
-
Back Th., Schiiltz M., Khuri S. A comparative study of a penalty function, a repair heuristic, and stochastic operators with the set-covering problem, Artificial Evolution, Springer, New York, NY, USA, 1996, pp. 320 — 322.
-
Balas E., Carrera M.C. A dynamic subgradient-based branch and bound procedure for set covering, Operations Research, 1996, vol. 44, no.6, pp. 875 — 890.
-
Beasley J.E. A Lagrangian heuristic for set-covering problems, Naval Research Logistics, 1990, vol. 37, no. 1, pp. 151 — 164.
-
Bomze I.M., Budinich M., Pardalos P.M., Pelillo. M. The maximum clique problem. Handbook of Combinatorial Optimization, Supplement, 1999, Kluwer Academic Publishers, pp. 1 — 74.
-
Borndorfer R. Aspects of set packing, partitioning, and covering, Aachen, Shaker Verlag, 1998, 219 p.
-
Brauner N. Decomposition into parallel work phases with application to the sheet metal industry, In: Proceedings of the International Conference on Industrial Engineering and Production Management (IEPM’99), Glasgow, 1999, vol. 1, pp. 389 — 396.
-
Caprara A., Toth P., Vigo D., Fischetti M. Modeling and solving the crew rostering problem, Operations research, 1998, vol. 46, no. 6, pp. 820 — 830.
-
Crescenzi P., Kann V. How to find the best approximation results — a follow-up to Garey and Johnson, ACM SIGACT News, 1998, vol. 29, no. 4, pp. 90 — 97.
-
Erdos P. On a combinatorial problem, Nordisk Matematisk Tidskrift, 1963, vol. 11, pp. 5 — 10.
-
Johnson D.S. Approximation algorithms for combinatorial problems, Journal of Computer and System Sciences, 1974, vol. 9, no. 3, pp. 256 — 278.
-
Nemhauser G.L., Trotter L.E. Vertex packings: structural properties and algorithms, Mathematical Programming, 1975, vol. 8, no. 2, pp. 232 — 248.
-
Krarup J., Pruzan P.M. The simple plant location problem: survey and synthesis, European Journal of Operational Research, 1983, vol. 12, no. 1, pp. 36 — 81.
-
Razumnyi Yu.N. Trudy MAI, 2009, no. 34, available at: http://trudymai.ru/eng/published.php?ID=8249
Download