Numerical simulation of argon plasma interaction with carbon sample of thermal-protective coating

Fluid, gas and plasma mechanics


Savitskiy D. V.*, Aksenov A. A.**, Zhluktov S. V.***

Joint Institute for High Temperatures of the Russian Academy of Sciences, 13, Izhorskaya str., Moscow, 125412, Russia



Real picture of physico-chemical processes around a hypersonic vehicle is extremely complex. While air deceleration in the head shock wave, almost all kinetic energy of the approach flow transforms into internal energy. This leads to the air heating up to high temperature (tens of thousands degrees) right behind the shock wave, which, further, subsides, while approaching the vehicle due to endothermic reactions of dissociation and ionization. As a result, the flow of multicomponent thermochemical non-equilibrium gas mixture forms in the shock layer. Interaction of the heated gas with the thermal heat shield of the vehicle initiates numerous additional interrelated processes. They are heterogeneous chemical reactions at the vehicle surface, homogeneous chemical reactions with participation of the heat shield destruction products, conjugate heat exchange between the gas and heat shield, non-stationary coating heating. The necessity to describe these processes leads to significant complication of mathematical model. The model of the hot gas interaction with the thermal shield is defined by the coating type.

The article presents a complex mathematical model describing the hot gas mixture flow near a hypersonic vehicle, mass entrainment from the vehicle surface, the ablation products effect on the processes proceeding in the gas phase, the heat shield heating, and the vehicle surface shape changing The model is not too complex. It was developed for systematic engineering calculations of the hypersonic flows near real vehicles.

The 3D flow of argon plasma around a carbon sample of a heat shield is simulated. The conditions are corresponding to the experiment performed at the Joint Institute for High Temperatures of RAS. It is assumed, that sublimation is the main mechanism of the sample ablation. Calculations were performed with the FlowVision software. The article presents the simulation results. The numerical modeling results are compared with the experimental data. The difference between the computed and experimental values of the mass loss rate is found to be within the experimental error.


hypersonic flying vehicle, thermal-protective coating, plasma, ablation, numerical simulation, Navier-Stokes equations


  1. Tirskii G.A., Sakharov V.I., Kovalev V.L., Vlasov V.I., Gorshkov A.B. Giperzvukovaya aerodinamika i teplomassoobmen spuskaemykh kosmicheskikh apparatov i planetnykh zondov (Hypersonic aerodynamics and heat and mass transfer of reentry modules and planetary probes), Moscow, Fizmatlit, 2011, 545 p.

  2. Nikitin P.V., Shkuratenko A.A. Trudy MAI, 2016, no. 88, available at:

  3. Pankratov B.M., Polezhaev Yu.V., Rud'ko A.K. Vzaimodeistvie materialov s gazovymi potokami (Interaction of materials with gas flows), Moscow, Mashinostroenie, 1976, 224 p.

  4. Polezhaev Yu.V., Yurevich F.B. Teplovaya zashchita (Heat shield), Moscow, Energiya, 1976, 392 p.

  5. Kuntz D., Hassan B., Potter D. Predictions of Ablating Hypersonic Vehicles Using an Iterative Coupled Fluid/Thermal Approach, Journal of Thermophysics and Heat Transfer, 2001, vol. 15, no. 2, pp. 129 - 139.

  6. Zhluktov S.V., Abe T. Viscous Shock Layer Simulation of Air Flow Past Ablating Blunt Body with Carbon Surface, Journal of Thermophysics and Heat Transfer, 1999, vol. 13, no. 1, pp. 50 - 59.

  7. Jones R., Weinstein S., Wilcox B., Yeomans D. NASA ISAS Collaboration on the ISAS MUSES C Asteroid Sample Return Mission, The Jet Propulsion Laboratory, Pasadena California, USA, available at:

  8. Ageev A.G., Kavyrshin D.I., Sargsyan M.A., Gadzhiev M.Kh., Chinnov V.F. Determination of graphite sublimation rate in high enthalpy plasma flow using “laser knife” method, International Journal of Heat and Mass Transfer, 2017, vol. 107, pp. 146 - 153.

  9. Chinnov V.F., Tyuftyaev A.S., Kavyrshin D.I., Ageev A.G., Sargsyan M.A., and Gadzhiev M.Kh. Comprehensive Study of the Effect of Plasma Stream on Heat-Resistant Materials, High Temperature, 2018, vol. 56, no.1, pp. 25 - 32.

  10. Aksenov A.A. Komp'yuternye issledovaniya i modelirovanie, 2017, vol. 9, no. 1. pp. 5 - 2011.

  11. Ashraf A., Yaqub K., Javeed S., Zeeshan S. Sublimation of graphite in continuous and pulsed arcdischarges, Turkish Journal of Physics, 2010, vol. 34, pp. 33 - 42.

  12. Hirt C.W., Nicholls B. D. Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 1981, vol. 39, pp. 201.

  13. Aksenov A.A., Zhluktov S.V., Savitskiy D.V., Bartenev G.Y., Pokhilko V.I. Simulation of 3D flows past hypersonic vehicles in FlowVision software, Journal of Physics: Conference Series, 2015, vol. 653, no. 012072, available at:

  14. Aksenov A.A., Gudzovsky A.V., Serebrov A.A. Electrohydrodynamic Instability of Fluid Jet in Microgravity, Proc. of 5th Int. Symposium on Computational Fluid Dynamics (ISCFD), Aug. 31 - Sept. 3, 1993, Sendai, Japan, 1993, vol.1, pp 19 - 24.

  15. Sushko G.B., Kharchenko S.A. Trudy mezhdunarodnoi nauchnoi konferentsii Parallel'nye vychislitel'nye tekhnologii. PaVT'-2009), (Nizhnii Novgorod, 30 marta – 3 aprelya 2009), Chelyabinsk, Izd-vo YuUrGU, 2009, pp. 316 - 324.

  16. Kharchenko S.A. Trudy Mezhdunarodnoi nauchnoi konferentsii “Parallel'nye vychislitel'nye tekhnologii”, (Sankt-Petersburg, 28 yanvarya – 1 fevralya 2008,), Chelyabinsk, Izd-vo YuUrGU, 2008, pp. 494 - 499.

  17. Gadzhiev M.Kh., Tyuftyaev A.S., Sargsyan M.A., Demirov N.A., Shcherbakov V.V. Vestnik Dagestanskogo gosudarstvennogo universiteta. Estestvennye nauki, 2016, vol. 31, no. 1, pp. 22 - 27.

  18. 18 Tyuftyaev A.S., Gadzhiev M.Kh., Sargsyan M.A., Chinnov V.F., Demirov N.A., Kavyrshin D.I., Ageev A.G. and Khromov M.A. Research methods of plasma stream interaction with heat-resistant materials, Journal of Physics: Conference Series, 2016, vol. 774, no. 012204, URL:

  19. Spravochnye dannye po davleniyu nasyshchennykh parov, URL:

Download — informational site MAI

Copyright © 2000-2024 by MAI