Computational and experimental studies of high-speed wings for advanced long-haul aircraft

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Bolsunovskii A. L.*, Buzoverya N. P., Skomorokhov S. I.**, Chernyshev I. L.***

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: bolsun@progtech.ru
**e-mail: skomorohov@tsagi.ru
***e-mail: ivan.chernyshev@tsagi.ru

Abstract

The article presents the description of a design technique and results of the study of two high-speed wings of the long haul aircraft thematic models. Two values of the cruise Mach number were considered: quite mustered in the world practice M = 0.85, and near transonic one M = 0.9. The wing for M = 0.85 has a sweep of χ1/4 = 32.7° and average relative thickness of t/c=11.2%, while for the more high-speed wing the sweep was increased up to χ1/4=38.5°, and the relative thickness was reduced to `t/c =9.5%, which was comparable to the B-747 wing parameters.

The wings were being designed using the aerodynamic design technique developed by the authors, which employs direct and inverse methods of computational aerodynamics, as well as optimization procedures. The design is performed in three stages. At the first stage, the initial geometry of the wing is selected according to the available data from the prototypes. An the second stage, it is being modified by solving the inverse problem with a given favorable pressure distribution at the main cruise flight mode. The specified pressure distribution is selected by the designer so as to minimize the wave drag (to weaken or even eliminate the shock waves), profile drag (to weaken strong pressure gradients and eliminate flow separations) and induced drag (to provide close to the elliptical load distribution over the span). Finally, the third stage commences a multi-criterion optimization procedure intended to expand the range of flight modes with minimal drag losses.

The thematic models were tested in TSAGI’s transonic wind tunnel T-106M both at cruise speeds and at low Mach number M = 0.2. The tests confirmed that the developed wings indeed ensure the achieving of the design cruise Mach number of M = 0.85 and M = 0.9 correspondingly and may be recommended for prospective long haul aircraft layout developing.

Keywords:

aerodynamic shape design, high-speed wing, long haul airliner, wind tunnel tests of an aircraft model

References

  1. Bolsunovskii A.L., Buzoverya N.P., Karas’ O.V., Kovalev V.E. XIII Shkola-seminar “Aerodinamika letatel’nykh apparatov”, (p. Volodarskogo, 28 fevralya-01 marta 2002), Zhukovskii, Tsentral’nyi aerogidrodinamicheskii institut im. professora N.E. Zhukovskogo, 2002, pp. 20.

  2. Building to fly, Flight International Supplement, 20-26 May 2003, available at: https://www.flightglobal.com/assets/getasset.aspx?itemid=9423

  3. Obert E. Aerodynamic design of transport aircraft, Delft University Press, IOS Press, 2009, 656 p.

  4. Norris G., Wagner M. Boeing 787 Dreamliner, Zenith Press, Minneapolis, 2009, 160 p.

  5. George F. Aviation Week evaluates Boeing 787, Aviation Week & Space Technology, Dec. 10 2012, no. 44, available at: https://cloud.mail.ru/public/KNFz/FAaRy8Npd/Aviation%20Week%20%26%20Space%20Technology%20(N.44)%2010%20December%202012.pdf

  6. Torenbeek E. Advanced Aircraft Design: Conceptual Design, Technology and Optimization of Subsonic Civil Airplanes, John Wiley and Sons, Chichester, 2013, 436 p.

  7. George F. Flying The A350: Airbus’s Most Technologically Advanced Airliner, Aviation Week & Space Technology, May 22, 2015, available at: http://aviationweek.com/commercial-aviation/flying-a350-airbus-s-most-technologically-advanced-airliner

  8. Byushgens G.S. Aerodinamika i dinamika poleta magistral’nykh samoletov (Long haul airliners’ aerodynamics and flight dynamics), Moscow-Pekin, Izd-vo TsAGI-Avia – izd-vo KNR, 1995, 772 p.

  9. Rossow C.C., Hoheisel H. Numerical study of interference effects of wing-mounted advanced engine concepts, 19th Congress of the International Council of the Aeronautical Sciences, 18.-28.9.1994, Anaheim, California, USA, ICAS-94-6.4.1, pp. 1272 – 1282.

  10. Berry D.L. The Boeing-777 engine/aircraft integration aerodynamic design process, 19th Congress of the International Council of the Aeronautical Sciences, 18.-28.9.1994, Anaheim, California, USA, ICAS 94 6.4.4. pp. 1305 – 1320.

  11. Osovskii A.E., Sviridenko Yu.N. Uchenye zapiski TsAGI, 1989, vol. XX, no. 1, pp. 103 – 107.

  12. Skomorokhov S.I., Teperin L.L. Uchenye zapiski TsAGI, 1990, vol. XXI, no. 1, pp. 82 – 88.

  13. Komarov V.A., Kuznetsov A.S., Lapteva M.Yu. Trudy MAI, 2011, no. 43, available at: http://trudymai.ru/eng/published.php?ID=24759

  14. Bolsunovskii A.L., Barinov V.A., Buzoverya N.P., Skomorokhov S.I., Chernavskikh Yu.N. Polet, 2008, Yubileinyi vypusk, pp. 16 – 23.

  15. Bolsunovskii A.L., Buzoverya N.P., Skomorokhov S.I., Chernyshev I.L. Polet, 2013, no. 3, pp 16-26.

  16. Barinov V.A. Raschet koeffitsientov soprotivleniya i aerodinamicheskogo kachestva dozvukovykh passazhirskikh i transportnykh samoletov (Drag and lift coefficients computing for subsonic airliners and transport aircraft), Zhukovskii, Trudy Tsentral’nogo aerogidrodinamicheskogo instituta im. prof. N.E. Zhukovskogo, no. 2205, 1983, 48 p.

  17. Goodmanson L.T. Transonic transport developments, Proceedings of the 12th Anglo-American Aeronautical Conference, Calgary, 7-9 July 1971, vol. 8, pp. 16.

  18. Haines A.B. The aerodynamic design of the wing-fuselage for a near-sonic transport – early thoughts and results revisited, 40th AIAA Aerospace Sciences Meeting and Exhibit, 14 – 17 January 2002, Reno, NV, U.S.A., AIAA paper 2002-0517, 2002, pp. 8.

  19. Williams B. Advanced technology transport configuration, Journal of Aircraft, 1973, vol. 10, no. 6, pp. 323 – 333.

  20. Kulfan B.M. Aerodynamic of sonic flight, Research & Enabling Technology Boeing Commercial Airplanes, 2006, available at: http://brendakulfan.com/docs/tas3.pdf

  21. Jameson A. An investigation of the attainable efficiency of flight at Mach One or just beyond, 45th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, AIAA paper 2007-37, available at: http://aero-comlab.stanford.edu/Papers/reno-machone-xlong.pdf


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход