Analysis and control of technical risk levels at various lifecycle stages of helicopters

Design, construction and manufacturing of flying vehicles


Аuthors

Andreev D. V.

National Helicopter Center Mil & Kamov, 26/1, Garshina str., Tomilino, Moscow region, 140070, Russia

e-mail: andreev_d_v@mail.ru

Abstract

The article analyzes the problem of ensuring a helicopter flight safety at its design stage. As a criterion of the degree of safety estimation the notion “risk”, being spread on the functioning of a complex technical object is used. The author suggests solving the problem of flight safety provision using the “acceptable risk concept”. Unlike the existing risk assessment model bearing exceptionally statistical character, the proposed approach provides not only risk assessment, but also risk management through the implementation of special measures. These may include, for example, a limitation on the operating conditions of the helicopter and / or additional technical procedures during its operation.

The methodological basis for risk assessment is the fail-safe tolerance analysis, which shows the ability of the system (or helicopter as a whole) to ensure the safe completion of the flight in the expected operating conditions in the event of a failure onboard. It allows determine the reliability of systems and helicopter as a whole. In case of their inconsistency to the specified requirements, the analysis of fail-safe systems allows solve the problems of optimizing the architecture of the helicopter systems as far back as at the design stage. The analysis results can also be used for planning the periodicity and preparation of works on maintenance and repair of the helicopter, or transferrring certain systems for maintenance according to “their actual state”. Such technique will allow minimize technical risks at all stages of the helicopter life cycle, i.e. from the development stage to the operation stage of the serial aircraft.

The article presents classification of the failures consequences and describes the risk assessment process using the risk matrix. On the example of designing a system for indicating the main rotor rotations, the article demonstrates the possibility of selecting the optimal design variant by the fail-safe criteria.

Keywords:

flight safety, risk, fail-safe analysis, lifecycle, reliability, maintenance

References

  1. Dmitriev V.G. Problemy sozdaniya perspektivnoi aviatsionno-kosmicheskoi tekhniki (Problems of perspective aerospace engineering creation), Moscow, FIZMALIT, 2005, – 648 p.

  2. Aronov I.Z. Standarty i kachestvo, 1998, no. 3, pp. 45 – 59.

  3. Menedzhment riska. Terminy i opredeleniya. GOST R 51897-2011 / Rukovodstvo ISO 73:2009 (Risk management. Terms and definitions. State Standard R 51897-2011 / ISO Guide 73: 2009), Moscow, Standartinform, 2011, URL: http://ismss.ru/uploads/5-4.pdf

  4. Alan J. Dtolzer, John J. Goglia. Safety Manegment Systems in Aviation, Taylor & Francis Group, 2015, 396 p.

  5. Gershman Yu.S., Neimark M.S., Petrov A.V., Tsesarskii L.G. Mezhdunarodnyi aviatsionno-kosmicheskii zhurnal “AviaSoyuz”, 2018, vol.1 (69), available at: http://www.aviasouz.com/69.pdf

  6. Postanovlenie Pravitel’stva Rossiiskoi Federatsii ot 18 noyabrya 2014 g. № 1215 “O poryadke razrabotki i primeneniya sistem upravleniya bezopasnost’yu poletov vozdushnykh sudov, a takzhe sbora i analiza dannykh o faktorakh opasnosti i riska, sozdayushchikh ugrozu bezopasnosti poletov grazhdanskikh vozdushnykh sudov, khraneniya etikh dannykh i obmena imi” (Decree of the Government of the Russian Federation, November 18, 2014, No. 1215 “On the procedure for the development and application of safety management systems for aircraft, as well as the collection and analysis of data on hazards and risks posing a threat to the safety of civil aircraft, and exchange them”), available at: http://legalacts.ru/doc/postanovlenie-pravitelstva-rf-ot-18112014-n-1215/

  7. Prozorov S.E., Verbin A.V. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53685

  8. Vozdushnyi transport. Sistema menedzhmenta bezopasnosti aviatsionnoi deyatel’nosti. Obshchie printsipy postroeniya SMB na vsekh etapakh zhiznennogo tsikla aviatsionnoi tekhniki. Strukturnaya skhema i funktsii modulei tipovoi SMB. Obshchie polozheniya. GOST R 55860-2013. (Air Transport. Security management system for aviation activities. General principles of building SMB at all stages of the life cycle of aviation equipment. Structural diagram and functions of modules of standard SMB. General Provisions. State Standard R 55860-2013), Moswcow, Standartinform, 2014, 22 p.

  9. Doc 9859 AN/474. Doc FAA. Safety Management Manual (SMM), ICAO, Third Edition, 2013, 251 p.

  10. Zhmerenetskii V.F., Polulyakh K.D., Akbashev O.F. Aktivnoe obespechenie bezopasnosti poleta letatel’nogo apparata (Aircraft active flight safety provision), Moscow, LENAND, 2014, 320 p.

  11. Osipov N.D. Analiz statisticheskikh dannykh po bezopasnosti aviatsionnoi deyatel’nosti na vertoletakh tipa Mi-8T i Mi-8MTV-1 (AMT) v GA Rossii za period s 1994 po 2013 god, available at: https://docplayer.ru/52810615-Analiz-statisticheskih-dannyh-po-bezopasnosti-ekspluatacii-vertoletov-tipa-mi-8t-i-mi-8mtv-1-amt-v-ga-rossii-za-period-s-1994-po-2013-god.html

  12. Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations 1959 – 2016. Aviation Safety Boeing Commercial Airplanes, available at: www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf

  13. Severtsev N.A. Voprosy teorii bezopasnosti i ustoichivosti system (Issues of theory of systems safety and stability), Moscow, VTs RAN im. A.A.Dorodnitsyna, 2005, 177 p.

  14. Aleksandrovskaya L.N., Aronov I.Z., Kruglov V.I. Bezopasnost’ i nadezhnost’ tekhnicheskikh system (Safety and reliability of technical systems), Moscow, Universitetskaya kniga, Logos, 2008, 376 p.

  15. Rekomendatel’nyi tsirkulyar AS-29-2S. Vintokrylye LA transportnoi kategorii (Advisory circular AC-29-2C. Rotary wing flying vehicles of transport category), Moscow, 2013, 1144 p.

  16. Rukovodstvo № 4761 po metodam otsenki bezopasnosti sistem i bortovogo oborudovaniya samoletov grazhdanskoi aviatsii. Mezhgosudarstvennyi aviatsionnyi komitet Aviatsionnyi registr (Guidelines on Methods for Safety Assessment Process Prforming on Civil Airborne Systems and Equipment ARP4761), Moscow, Aviaizdat, 2010, – 264 p.

  17. Smirnov N.N., Chinyuchin Yu.M. Sovremennye problemy tekhnicheskoi ekspluatatsii vozdushnykh sudov (Modern problems of aircraft technical operation), Moscow, MGTU GA, Chast’ 1, 2007, 83 p.

  18. Dhillon B.S. Human Reliability, Error, and Human Factors in Engineering Maintenance: with Reference to Aviation and Power Generation, Taylor & Francis Group, 2009, 185 p.

  19. ATA MSG-3. Operator/Manufacturer Scheduled Maintenance Development: revision 2003.1, Air Transport Association of America, 2003, 92 p.

  20. Aviatsionnye pravila. Chast’ 29. Normy letnoi godnosti vintokrylykh apparatov transportnoi kategorii (Aviation regulations. Part 29. Standards of airworthiness of rotorcraft of transport category), Mezhgosudarstvennyi aviatsionnyi komitet, 2003, 136 p.

  21. Rukovodstvo R4754 po protsessam sertifikatsii vysokointegrirovannykh slozhnykh bortovykh sistem vozdushnykh sudov grazhdanskoi aviatsii, na baze dokumentov SAE/APR4754 i EUROCAE/ED-79 (Certification Considerations for Highly-Integrated Or Complex Aircraft Systems ARP4754), Mezhgosudarstvennyi aviatsionnyi komitet, Moscow, Aviaizdat, 2007, 103 p.

  22. Gipich G.N., Evdokimov V.G., Kuklev E.A., Shapkin V.S. Riski i bezopasnost’ aviatsionnykh sistem (Risks and safety of aviation systems), Moscow, GosNII GA, 2013, 232 p.

  23. McCarthy J., Schwartz N. Modeling risk with the flight operation risk assessment system (FORAS), Conference ICAO in Rio de Janeiro, Brazil, Nov. 1999, 235 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход