The construction principles of the radio altimeter system for measurement parameters motion of the recovery capsule

Radio engineering, including TV systems and devices


Аuthors

Vasil'eva A. V.*, Sedov D. P.*

Ural design bureau “ Detal’ ”, 8, Pionerskaya str., Kamensk-Uralsky, Sverdlovsk region, 623409, Russia

*e-mail: solovjev@nexcom.ru

Abstract

The key factor while selecting the landing system of a modern spaceship is a single requirement, namely, the necessity of multiple use of a reentry module. A simple parachute system with landing on a firm-land is not capable to slow-down a spaceship to the necessary extent, since it is rather difficult to create the landing shock absorber which would withstand such loading and protect the ship’s hull from damaging. Besides, due to uncompensated lateral velocity and under strong wind the capsule e may fall on its side. To account for lateral velocity and cant angles of a reentry module relative to the surface it is necessary to employ the system ensuring measuring of the corresponding parameters.

The radio altimeter system is included in the reentry module of a manned spacecraft and is intended to measure the current drop altitude from 500 to 0.5 m, the current components of the velocity vector of the center of masses, current cant angles of the reentry module relative to the underlying surface.

The radio altimeter system differs from the earlier designed by implementation of the original technical solutions ensuring carrying-out of the draft proposal requirements on the range and accuracy of measured parameters, built-in self-monitoring, reliability factors, vitality and withstandability to external impact.

Radio altimeter system presents is a pulse Doppler radio altimeter of motion parameters. The authors suggest employing the multi-beam two-mirrors antennae with nine beams as an antennae system.

To ensure performing the task of landing in case of failures in the system the dual redundancy of transmitting modules is implemented. Each module functions independently and executes the flight parameters measurement. The use of information from all transmitters enhances accuracy of the parameters measurement.

The article presents all basic principles of radio altimeter system developing for measuring parameters of movement of a reentry module. It demonstrates operating algorithms of the unit and basic equations for the required parameters computing. The functional diagram of the radio altimeter system was developed and the ways of its reliability increasing were suggested. The effectiveness of the suggested algorithms was substantiated by the system operation modeling. Evaluation of the radio altimeter system accuracy characteristics demonstrating correctness of the selected methods was performed.

Keywords:

radio altimeter system, recovery capsule, manned spacecraft, current height, forming vector to velocities, angles of the slopping

References

  1. Egorov V.V. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, vol. 9, no. 2, pp. 145 – 151.

  2. Kolchinskii V.E., Mandurovskii I.A., Konstantinov M.I. Avtonomnye dopplerovskie ustroistva i sistemy navigatsii letatel’nykh apparatov (Autonomous Doppler devices and systems for aircraft navigation), Moscow, Sovetskoe radio, 1975, 432 p.

  3. Zhukovskii A.P., Onoprienko E.I., Chizhov V.I. Teoreticheskie osnovy radiovysotometrii (Radio Altitude-Finding Radars theoretical basics), Mocow, Sovetskoe radio, 1979, 320 p.

  4. Shashurin V.D., Bashkov V.M., Vetrova N.A., Shalaev V.A. Nadezhnost’ tekhnicheskikh sistem. Rezervirovanie, vosstanovlenie (Reliability of the technical systems. Backing-up, restoratioin), Moscow, MGTU im. N.E. Baumana, 2009, 60 p.

  5. Khokhlachev V.V., Antonenko V.N. Otrazhayushchie svoistva poverkhnostei sushi SVCh (Reflecting properties of land surfaces on SHF), Zaporozh’e, Zaporozhskii mashinostroitel’nyi institut im. V.Ya. Chubarya, 1986.

  6. Fitenko V.V., Granovskii V.A., Vargaftik B.C. Naukoemkie tekhnologii, 2008, no. 6, pp. 14 – 19.

  7. James T. Murray; Jason Seely; Jeff Plath; Eric Gotfreson; John Engel, et al. Dust-Penetrating (DUSPEN) “see-through” lidar for helicopter situational awareness in DVE, Proc. SPIE 8737, Degraded Visual Environments: Enhanced, Synthetic, and External Vision Solutions 2013, 87370H (May 16, 2013), 8 p.

  8. Planetary terminal descent and landing radar. Final report Autonetics North American Rockwell. NASA CR-111861 C71-52/301 copy, 1971, available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710011019.pdf

  9. Dunn С., Prakash R. A Terminal Descent Sensor Trade Study Overview for the Orion Landing and Recovery System, IEEE Aerospace Conference, March 6, 2008, Big Sky, Montana, available at: http://hdl.handle.net/2014/41702

  10. Verba V.S. Traektoriya poleta (Trajectory of flight). TsKB-17, NII-17, MNIIP, OAO “Kontsern “Vega”, Moscow, Oruzhie i tekhnologii, 2005, 252 p.

  11. Bakit’ko R.V., Vas’ev M.B., Vinitskii A.S. et al. Radiosistemy mezhplanetnykh kosmicheskikh apparatov (Interplanetary spacecraft radio systems), Moscow, Radio i svyaz’, 1993, 328 p.

  12. Zubkovich S.G. Statisticheskie kharakteristiki radiosignalov, otrazhennykh ot zemnoi poverkhnosti (Statistical characteristics of radio signal reflected from the Earth surface), Moscow, Sovetskoe radio, 1968, 224 p.

  13. Ulaby F.T. et al. Michigan microwave canopy scattering model, International Journal of Remote Sensing, 1990, vol. 11, no. 7, pp. 1223 –1253.

  14. Borkus M.N., Chernyi A.E. Korrelyatsionnye izmeriteli putevoi skorosti i ugla snosa letatel’nykh apparatov (Correlated measurers of path velocity and sideslip angle of a flying vehicle), Moscow, Sovetskoe radio, 1973, 168 c.

  15. Skolnik M. Osnovy radiolokatsii. Spravochnik po radiolokatsii (Fundamentals of radiolocation. Radiolocation manual), Moscow, Sovetskoe radio, vol. 1, 1976, 456 p.

  16. Lukoshkin A.P. et al. Obrabotka signalov v mnogokanal’nykh RLS (Signal processing in multi-channel RLS), Moscow, Radio i svyaz’, 1983, 328 p.

  17. Dyad’kov N.A., Markov Yu.V., Vazhenin V.G., Bokov A.S., Sedov D.P., Kalmykov N.N., Mel’nikov S.A. 27-ya mezhdunarodnaya krymskaya konferentsiya “SVCh-tekhnika i telekommunikatsionnye tekhnologii”. Krymiko’2017, (Sevastopol’, 10-16 sentyabrya 2017), Sevastopol’, Krymskii nauchno-tekhnologicheskii tsentr im. prof. A.S. Popova, 2017, pp. 82.

  18. Leshko N.A., Ashurkov I.S., Tsybul’nik A.N. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/apublished.php?ID=87350

  19. Khuan Ichun. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74747

  20. Koval’skii A.A., Afonin G.I., Tereshchenko S.V. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87284


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход