Micro unmanned aerial vehicle intrinsic position determining in conditions of enclosed space

System analysis, control and data processing


Аuthors

Gogolev A. A.1*, Gorobinskiy M. A.2**

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. State Institute of Aviation Systems, 7, Victorenko str., Moscow, 125319, Russia

*e-mail: kirbizz8@yandex.ru
**e-mail: migo2405@gmail.com

Abstract

Micro unmanned aerial vehicles (micro-UAV) of a multicopter type are capable of performing a target assignment in enclosed space (indoors) due to their relative compactness and possibility to maneuver in a limited space. Modern UAV complexes employ the receiver of satellite navigation systems (SNS) GLONASS/GPS, which signals do not penetrate the premises as the main information channel. As a result, maneuvering and target assignments performing inside the premises in autonomous mode is drastically restricted while the UAV control by the operator is hampered due to the lack of visual control of the situation around the UAV and presence of the obstacles along the route path.

According to the concept of the UAV development, the task performance should perform in automatic mode. This means that UAV should have an autonomous navigation system operating independently from GLONASS/GPS signals. For this purpose, the UAV is equipped with onboard computing means, but they have certain shortcomings. The strapdown navigation system (SNS) demonstrates large drift indices and accuracy of about 2 to 3 meters; the barometer’s accuracy is about 0.5 meters which is not enough for solving the problem of autonomous piloting; magnetometer is source of significant readings outburst in case of a large metal object presence.

This article suggests the solution of the problem of determining the micro-UAV space position bypassing GLONASS/GPS signals, but employing the SNS and visual navigation system. Data processing from SNS and magnetometer is being performed by Mahony filter at 50 Hz frequency. Due to this fact, the state vector has a high updating rate and a little time of errors accumulation. The altitude computing is performed by complexing information of the barometer and Mahony filter. For spatial position determining the visual navigation system employs code guide-marks, located in the premises, for unambiguous description of ambience specifics. The visual navigation accuracy is 5 cm. Correction of Mahony filter and visual navigation is performed by complementary filter.

The presented hardware-software complex allows determine the intrinsic position, applying the onboard computer, in real time mode with accuracy of about 10 cm, which is about 1/5 of the aerial vehicle linear size.

Keywords:

Mahony filter, navigation system, unmanned aerial vehicle, multicopter, quadcopter, code guide-marks, autonomous navigation system

References

  1. Pervyi kvadrokopter, 2014, available at: https://geektimes.ru/post/240916

  2. UPS wants to turn its delivery trucks into motherships for autonomous drones, 2017, аvailable at: 

    http://www.businessinsider.com/ups-test-delivery-truck-autonomous-drones-2017-2?_ga=1.135060529.1274288254.1488796477%2F

  3. Chovancová A., Fico T., Hubinský P., Duchon F. Comparison of various quaternion-based control methods applied to quadrotor with disturbance observer and position estimator, IEEE Robotics and Autonomous Systems, 2016, no.79, pp. 87 – 98.

  4. Ogol’tsov I.I., Rozhnin N.B., Sheval’ V.V. Trudy MAI, 2015, no. 83, available at: http://trudymai.ru/eng/published.php?ID=62031

  5. Fil’tr Madzhvika, 2015, available at: https://habrahabr.ru/post/255661

  6. Sebastian O.H. Madgwick, Andrew J.L. Harrison, Ravi Vaidyanathan. Estimation of IMU and MARG orientation using a gradient descent algorithm, 2011 IEEE International Conference on Rehabilitation Robotics Rehab Week Zurich, ETH Zurich Science City, Switzerland, June 29 – July 1, 2011, рр. 179 – 185.

  7. Sebastian O.H. Madgwick. An efficient orientation filter for inertial and inertial/magnetic sensor arrays, April 30, 2010, available at: http://x-io.co.uk/res/doc/madgwick_internal_report.pdf

  8. Kolosovskaya T.P. Trudy MAI, 2016, no. 88, available at: http://trudymai.ru/eng/published.php?ID=70666

  9. Aksenov A.Yu., Zaitseva A.A., Kuleshov S.V., Nenausnikov K.V. Trudy MAI, 2017, no. 96, available at: http://trudymai.ru/eng/published.php?ID=85880

  10. Chuang Li, Hongxin Dong, Quan Quan. A Mismatching Eliminating Method Ba sed on Camera Motion Information, Proceedings of the 34th Chinese Control Conference, July 28-30, 2015, Hangzhou, China, available at: http://rfly.buaa.edu.cn/doc/2015_LiChuang_AMismatchingEliminating.pdf

  11. Garrido-Jurado S., Muñoz-Salinas R., Madrid F.J. Automatic generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition, June 2014, vol. 6, no. 47, pp. 2280 – 2292.

  12. John Canny. A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, November 1986, vol. PAMI-8, no. 6, pp. 679 – 698.

  13. Satoshi Suzuki, Keiichi Abe. Topological Structural Analysis of Digitized Binary, Computer Vision Graphics and Image Processing, 1985, no.30, issue 1, pp. 32 – 46.

  14. Paul Zarchan, Howard Musoff. Fundamentals of Kalman Filtering: A Practical Approach, American Institute of Aeronautics and Astronautics, Incorporated, 2000, 664 p.

  15. Nagesh Y., Bleakley C. Accurate Orientation Estimation Using AHRS under Conditions, Sensors, 2014, no. 14, pp. 20008 – 20024, doi:10.3390/s141120008.

  16. Valenti R.G., Dryanovski I., Jizhong Xi. Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs, Sensors, 2015, no. 15, issue 8, pp. 19302 – 19330, available at: https://doi.org/10.3390/s150819302

  17. Gogolev A.A. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=77238

  18. Yeo D., Sydney N., Paley D., Sofge D. Onboard flow sensing for downwash detection and avoidance with a small quadrotor helicopter, AIAA Guidance Navigation and Control Conference, 2015, pp. 1769.

  19. Daniel P. Magree, Gerald J.J. van Dalen, Stephen Haviland и Eric N. Johnson. Light-weight Quadrotor with On-board Absolute Vision-aided Navigation, Unmanned Aircraft Systems (ICUAS), 2015 International Conference on, Denver, 2015, pp. 1158 – 1167.

  20. Magree D., Johnson E.N. A Monocular Visionaided Inertial Navigation System with Improved Numerical Stability, AIAA Guidance, Navigation, and Control Conference, Florida, January 2015, pp. 0097. DOI: 10.2514/6.2015-0097


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход