Mathematical modelling of complex heat exchange while developing SLM laser technologies

Mathematica modeling, numerical technique and program complexes


Аuthors

Lebedkin I. F.1*, Molotkov A. A.2**, Tretiyakova O. N.***

1. Research Institute “ESTO”, 5, Georgievsky Avenue, build. 1, Moscow, Zelenograd, 124460, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: ivan_leb@mail.ru
**e-mail: karacerr@gmail.com
***e-mail: tretiyakova_olga@mail.ru

Abstract

An important task of development and research in the field of additive technology is mathematical models developing. A large number of changing parameters, such as laser power, speed, the bulk layer thickness, laser spot diameter, etc.) makes the process of the machine optimal operation mode selecting time consuming and expensive. Besides, various designs of created objects require creation mode of their own. Application of mathematical modeling can significantly reduce research and production costs. In this case, we start solving a simplified problem of heating the body by a mobile heat source, which is a Gaussian beam of radiation, with account for the phase transitions in the material. Calculations are presented in two versions, using third-party software that makes the calculation by the finite element method, and using its own software that performs calculation by the explicit finite difference scheme. The obtained results were compared to the results of other studies. A qualitative matching of the results was observed. The results discrepancy is caused mainly by the assumptions made while the model developing. In the future, it is necessary to account for the medium dispersion and particles movement during the process. As revealed by the experiments, the air flows movement and of the material evaporation from the surface exert a significant impact on the result as well. Strong restrictions on the spatial and temporal steps can be tried to circumvent using implicit methods with the property of absolute stability. The mathematical model and numerical computation method upgrading continues.

Keywords:

mathematical model, Gaussian beam, laser, heat equation, phase transitions, numerical solution

References

  1. Vaks E.D., Milen'kii M.N., Saprykin L.G. Praktika pretsizionnoi lazernoi obrabotki (Practice of precision laser processing), Moscow, Tekhnosfera, 2013, 696 p.

  2. Vaks. E.D., Lebedkin I.F., Milen'kii M.N., Saprykin L.G., Toloknov A.F. Rezanie metallov izlucheniem moshchnykh volokonnykh lazerov (Cutting metals with radiation from high-power fiber lasers), Moscow, Tekhnosfera, 2016, 352 p.

  3. Morgunov Yu.A., Saushkin B.L. Additivnye tekhnologii, 2016, no. 1, pp.30 - 38.

  4. Raevskii E.V., Tsygantsova A.L. Additivnye tekhnologii, 2016, no. 1, pp.10 - 12.

  5. Schmidt M. The Additive manufacturing in production: Challenges and opportunities, Proc. SPIE. 2-nd Int. Symp. on Laser 3D Manufacturing, 2015, no. 9353, рp. 9353-2.

  6. Alkhayat M. Comparison of Geometrical Properties of Parts Manufactured by Powder Bed Based (SLM) and Powder Fed Based (LMD) Laser Additive Manufacturing Technologies, Proc. ICALEO. Laser Materials Processing Conference, 2014, Paper 1502.

  7. Choi J., Han L., Hua Y. Modeling and Experiments of Laser Cladding with Droplet Injection, Journal Heat Transfer. ASME, 2005, 127(9), pp. 978 - 986, available at: https://www.flow3d.com/wp-content/uploads/2014/06/Simulation-of-Laser-Additive-Manufacturing-and-its-Applications.pdf

  8. Bugeda G., Cervera M., Lombera G. Numerical Prediction of Temperature and Density Distributions in Selective Laser Sintering Processes, Rapid Prototyping Journal, 1999, no. 5, pp. 21 – 26, available at: http://cervera.rmee.upc.edu/papers/1999-IJRP-laser-sintering.pdf

  9. Xiao B., Zhang Y. Numerical Simulation of Direct Metal Laser Sintering of Single-Component Powder on Top of Sintered Layers, ASME Journal Manufacturing Science and Engineering, 2008, no. 130, pp. 041002, available at: http://www.academia.edu/20776977/Numerical_Simulation_of_Direct_Metal_Laser_Sintering_of_Single-Component_Powder_on_Top_of_Sintered_Layers

  10. Abe F., Osakada K., Shiomi M., Uematsu K., Matsumoto M. The manufacturing of hard tools from metallic powders by selective laser melting, Journal of materials processing technology, 2001, no. 111(1), pp. 210–213, available at: https://www.researchgate.net/publication/257344311_The_manufacturing_of_hard_tools_from_metallic_powders_by_selective_laser_melting

  11. Badrossamay M., Childs T. Further studies in selective laser melting of stainless and tool steel powders, International Journal of Machine Tools and Manufacture, 2007, no. 47(5), pp. 779 - 784, available at: https://www.researchgate.net/publication/223811554 Further studies in selective laser melting of stainless and tool steel powders

  12. Vandenbroucke B., Kruth J.-P., Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, 2007, vol. 13, no. 4, pp. 196 - 203, available at: http://sffsymposium.engr.utexas.edu/Manuscripts/2006/2006-15-Vanderbroucke.pdf

  13. Yasa E., Kruth J. Application of laser re-melting on selective laser melting parts, Advances in Production Engineering & Management 6, 2011, no. 4, pp. 259 - 270, available at: http://apem-journal.org/Archives/2011/APEM6-4_259-270.pdf

  14. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L. Review of selective laser melting: Materials and applications, Applied Physics Reviews, December 2015, vol. 2, Issue 4, id.041101, available at: https://www.researchgate.net/publication/286497734_Review_of_selective_laser_melting_Materials_and_applications

  15. Yuan P., Gu D. Molten pool behavior and its physical mechanism during selective laser melting of TiC / AlSi10Mg nanocomposites: simulation and experiments, Journal of Physics D: Applied Physics, 2015, no. 48(3), 035303, available at: https://www.researchgate.net/publication/273186399_Molten_pool_behaviour_and_its_physical_mechanism_during_selective_laser_melting_of_TiCAlSi10Mg_nanocomposites_Simulation_and_experiments

  16. Papadakis L., Loizou A., Risse J., Bremen S. A thermo-mechanical modeling reduction approach for calculating shape distortion in SLM manufacturing for aero engine components, January 2014 available at: https://www.researchgate.net/publication/287542993_A_thermo-mechanical_modeling_reduction_approach_for_calculating_shape_distortion_in_SLM_manufacturing_for_aero_engine_components

  17. Formalev V.F. Teplomassoperenos v anizotropnykh tverdykh telakh. Chislennye metody, teplovye volny, obratnye zadachi (Heat and mass transfer in anisotropic solids. Numerical methods, heat waves, inverse problems), Moscow, FIZMATLIT, 2015, 280 p.

  18. Formalev V.F., Kolesnik S.A. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53710

  19. Goryunov A.V., Molodozhnikova R.N, Prokof'ev A.I. Trudy MAI, 2013, no. 71, available at: http://trudymai.ru/eng/published.php?ID=46856

  20. Goryunov A.V., Molodozhnikova R.N., Prokof'ev A.I. Trudy MAI, 2013, no. 71, available at: http://trudymai.ru/eng/published.php?ID=46842

  21. Lebedkin I.F., Tret'yakova O.N. Materialy XXIII Mezhdunarodnyi simpozium “Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred” im. A.G. Gorshkova (Vyatichi, 13-17 Febr. 2017), Moscow, TRP, 2017, vol.1, pp. 155 - 157.

  22. Lebedkin I.F., Molotkov A.A., Tret'yakova O.N. Rossiiskaya nauchno-tekhnicheskaya konferentsiya s mezhdunarodnym uchastiem “Opticheskie tekhnologii, materialy i sistemy” OPTOTEKh – 2017. Sbornik dokladov (Moscow, 14-15 Dec. 2017), Moscow, Moskovskii tekhnologicheskii universitet (MIREA), 2018, pp. 61 - 67.

  23. Lebedkin I.F., Molotkov A.A., Tret'yakova O.N. XII Mezhdunarodnaya konferentsiya po prikladnoi matematike i mekhanike v aerokosmicheskoi otrasli (NPNJ’2018). Sbornik dokladov (Alushta, 24-31 Maya 2018), Moscow, Izd-vo MAI, 2018, pp. 496 - 497.

  24. Kondratenko V.S., Tret'yakova O.N. Problemy sozdaniya novykh lazernykh tekhnologii (The problems of creating new laser technologies), Moscow, Izd-vo MAI, 2018, 160 p.

  25. Kondratenko V.S., Vysokanov A.A., Sakunenko A.Yu., Tret'yakova O.N., Molotkov A.A., Tikmenov V.N. Uspekhi prikladnoi fiziki, 2018, no. 2, pp. 166 - 173.

  26. Gusarov A.V., Yadroitsev I., Bertrand Ph., Smurov I. Model of Radiation and Heat Transfer in Lazer-Powder Interaction Zone at Selective Lazer Melting, Journal of Heat Transfer, 2009, vol. 131: 072101-1-9, available at: https://www.researchgate.net/publication/275383373

  27. Dayal Ram. Numerical Modelling of Processes Governing Selective Laser Sintering. Technische Universität, Darmstadt, Ph.D. Thesis, 2014, available at: http://tuprints.ulb.tu-darmstadt.de/3988/

  28. Luis E. Criales, Yiğit M. Arısoy and Tuğrul Özel. MSEC2015-9321 A sensitivity analysis study on the material properties and process parameters for selective laser melting of inconel 625, 2015 ASME International Conference on Manufacturing Science and Engineering, 8-12 June, 2015, Charlotte, NC, available at: https://www.researchgate.net/publication/282293995


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход