Width evaluation of contact zone between flat-oval cooling channels and transmitting module case of active phased-array antenna

Dynamics, strength of machines, instruments and equipment


Аuthors

Dobryansky V. N.1*, Rabinsky L. N.1**, Radchenko V. P.1***, Solyaev Y. O.2****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Institute of Applied Mechanics of Russian Academy of Science, IPRIM RAS, 7, Leningradskiy Prospekt, Moscow, 125040, Russia

*e-mail: dobryanskijvn@mai.ru
**e-mail: rabinskiy@mail.ru
***e-mail: radchenko.v@radiofizika.com
****e-mail: yos@iam.ras.ru

Abstract

The layout of modern digital active phased antenna arrays involves transceivers and digital control circuits placing on the antenna canvas in each radiator, which leads to its dense filling and, consequently, intense heating. Thus, the task of heat power removing from the antenna comes to the fore and requires the development of effective thermal control systems that meet not only the requirements for active phased antenna arrays cooling intensity, but also for reliability, maintainability, structural strength under high-cycle loading conditions, etc.

The article presents a technique for deformable thin-walled cooling channels, used in mobile radar stations thermal control systems, modeling. In the idle state, the cooling channels are placed between the receiving and transmitting modules of active phased antenna arrays with small gaps, which allows their convenient installing and maintenance. While operation, the coolant hydrostatic pressure is injected into the channels, causing the channels to deform and contact the walls of the receiving-transmitting modules, ensuring the discharge of the generated heat to the external cooling system. One of the main parameters characterizing the heat dissipation intensity is the contact zone width, realized between the channels and the walls of the receiving and transmitting modules. The article solves the problem of determining this parameter. It considers the contact between deformable channels with a flat-oval cross-section and cooled surfaces of the heated receiving-transmitting modules of active phased antenna arrays. The problem is being solved with account for hydrostatic pressure acting inside the channels, the geometry of the channel cross sections and the gaps between the modules being cooled. The solution of the contact problem for a cylindrical non-axisymmetric shell is reduced to solving the problem of a beam deformation of unit width (cross-section contour) for the case of a plane deformed state. The solution was obtained in an implicit form since the width of the contact zone was defined as the root of a sixth degree polynomial. The dependence of the contact zone width on the geometric parameters (gaps, section dimensions) and the actual pressure was studied.

Keywords:

cooling channels, shell of flat-oval cross-section, contact zone width, thermal control systems

References

  1. Krakhin O.I., Radchenko V.P., Ventsenostsev D.L. Radiotekhnika, 2011, no. 10, pp. 88 – 94.

  2. Tokmakov D.I. Trudy MAI, 2013, no. 68, available at: http://trudymai.ru/eng/published.php?ID=41993

  3. Babaitsev A.V., Rabinskii L.N., Radchenko V.P., Ventsenostsev D.L. Tekhnologiya metallov, 2017, no. 10, pp. 38 – 46.

  4. Babaitsev A.V., Ventsenostsev D.L., Rabinskii L.N., Radchenko V.P. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2017, no. 9 (1), pp. 365 – 374.

  5. Grigolyuk E.I., Tolkachev V.M. Kontaktnye zadachi teorii plastin i obolochek (Contact problems of the theory of plates and shells), Moscow, Mashinostroenie, 1980, 411 p.

  6. Grigolyuk E.I., Shalashilin V.I. Problemy nelineinogo deformirovaniya: metod prodolzheniya resheniya po parametru (Problems of nonlinear deformation: the method of continuation of the solution on the parameter), Moscow, Nauka, 1988, 231 p.

  7. Vlasov V.Z. Izvestiya AN SSSR, 1949, no. 6, pp. 41 – 45.

  8. Mossakovskii G. et al. Kontaktnye zadachi teorii obolochek i sterzhnei (Contact problems of the theory of shells and rods), Moscow, Mashinostroenie, 1978, 248 p.

  9. Lavendel E.E. Raschet rezinotekhnicheskikh izdelii (Calculation of rubber products), Mashinostroenie, Moscow, Mashinostroenie, 1976, 232 p.

  10. Pelekh B.L., Sukhorol’skii M.A. Kontaktnye zadachi teorii uprugikh anizotropnykh obolochek (Contact problems of the theory of elastic anisotropic shells), Kiev, Naukova dumka, 1980, 214 p.

  11. Kantor B.Ya. Kontaktnye zadachi nelineinoi teorii obolochek vrashcheniya (Contact problems of the nonlinear theory of shells of revolution), Kiev, Naukova dumka, 1990, 136 p.

  12. Gorshkov A.G., Tarlakovskii D.V., Fedotenkov G.V. Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2000, no. 5, pp. 151 – 158.

  13. Mikhailova E.Yu., Tarlakovskii D.V., Fedotenkov G.V. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53499

  14. Tarlakovskii D. V., Fedotenkov G. V. Problemy mashinostroeniya i nadezhnosti mashin, 2014, no. 2, pp. 69 – 76.

  15. Christopher R.A., Essenburg F. The contact of axisymmetric cylindrical shells with smooth rigid surfaces, Developments in Mechanics: Proceedings of the Twelfth Midwestern Mechanics Conference, 1971, vol. 6, pp. 773.

  16. Kulkarni S.V., Frederick D. On the adhesive contact of two coaxial cylindrical shells, Journal of Applied Mechanics, 1974, vol. 41(2), pp. 477 – 483.

  17. Alexandrov S., Jeng Y.R., Lomakin E. An exact semi-analytic solution for residual stresses and strains within a thin hollow disc of pressure sensitive material subject to thermal loading // Meccanica, 2014, vol. 49(4), pp. 775 – 794.

  18. Kitching R., Houlston R., Johnson W. A theoretical and experimental study of hemispherical shells subjected to axial loads between flat plates, International Journal of Mechanical Sciences, 1975, vol. 17(11–12), pp. 693 – 694, doi 10.1016/0020-7403(75)90072-7

  19. Updike D.P., Kalnins A. Contact pressure between an elastic spherical shell and a rigid plate, Journal of Applied Mechanics, 1972, vol. 39(4), pp. 1110 – 1114, doi 10.1115/1.3422838

  20. Essenburg F. On surface constraint in plate problems, Journal of Applied Mechanics of ASME, 1962, vol. 29 (2), pp. 340 – 344, doi 1115/1.3640552

  21. Long R., Shull K.R., Hui C.Y. Large deformation adhesive contact mechanics of circular membranes with a flat rigid substrate, Journal of the Mechanics and Physics of Solids, 2010, vol. 58(9), pp. 1225 – 1242, doi 10.1016/j.jmps.2010.06.007

  22. Srivastava A., Hui C.Y. Large deformation contact mechanics of long rectangular membranes. I. Adhesionless contact, Proceedings of the Royal Society of London Series A, 2013, 469:20130, 424, doi 10.1098/rspa.2013.0424

  23. Patil A., DasGupta A. Constrained inflation of a stretched hyperelastic membrane inside an elastic cone, Meccanica, 2015, vol. 50(6), pp. 1495 – 1508.

  24. Novozhilov V.V. Teoriya tonkikh obolochek (Theory of thin shells), Saint Petersburg, Izd-vo Sankt Peterburgskogo universiteta, 2010, 380 p.

  25. Axelrad E.L. Theory of Flexible Shells, North-Holland Series in Applied Mathematics and Mechanics, 1987, vol. 28: available at: https://www.elsevier.com/books/theory-of-flexible-shells/axelrad/978-0-444-87954-7

  26. Soldatos K.P. Mechanics of cylindrical shells with non-circular cross-section: A survey, Applied Mechanics Reviews, 1999, vol. 52(8), pp. 237 – 274, doi 10.1115/1.3098937

  27. Kumar A, Patel BP (2017) Nonlinear dynamic response of elliptical cylindrical shell under harmonic excitation, International Journal of Non-Linear Mechanics, 2017, vol. 98(1), pp. 102 – 113, doi 10.1016/j.ijnonlinmec.2017.10.008

  28. Ibrahim S.M., Patel B.P., Nath Y. On the nonlinear dynamics of oval cylindrical shells, Journal of Mechanics of Materials and Structures, 2010, vol. 5(6), pp. 887 – 908, doi I 10.2140/jomms.2010.5.887

  29. Vaziri A. Mechanics of highly deformed elastic shells, Thin-Walled Structures, 2009, vol. 47(6-7), pp. 692 – 700, doi 10.1016/j.tws.2008.11.009

  30. Feodos’ev V.I. Izbrannye zadachi i voprosy po soprotivleniyu materialov (Theory of thin shells), Moscow, Nauka, 1967, 376 p.

  31. Kim J.H., Ahn Y.J., Jang Y.H., Barber J.R. Contact problems involving beams, International Journal of Solids and Structures, 2014, vol. 51 (25-26), pp. 4435 – 4439.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход