Comparative modeling of N2 molecules dissociation in thermally non-equilibrium conditions

Fluid, gas and plasma mechanics


Аuthors

Pogosbekian M. Y.*, Sergievskaya A. L.**, Kroupnov A. A.***

Institute of Mechanics Lomonosov Moscow State University, 1, Michurinsky prospect, Moscow, 119192, Russia

*e-mail: pogosbekian@imec.msu.ru
**e-mail: sergievska@imec.msu.ru
***e-mail: kroupnov@imec.msu.ru

Abstract

At strong shock waves in rarefied gases, chemical processes such as dissociation and exchange reactions occur in conditions of thermodynamic non-equilibrium, and the rate coefficients are the functions of both translational—rotational and vibrational temperatures.

The object of the study are chemical reaction models of the of N2 molecules dissociation occurring in thermally non-equilibrium conditions.

The goal of the work consists in comparative study of physico-chemical processes models on the example of dissociation of nitrogen molecules. For comparison, the well-known and frequently used theoretical dissociation models, representing the process in a single-temperature, two-temperature, and level approximation, were chosen. The article presents a detailed description of theoretical models allowing calculate the goal functions of the N2 molecule dissociation models in thermally non-equilibrium conditions, both in the two-temperature and in the level approximations. To perform a valid and reliable comparison, in addition to theoretical models, the results of molecular dynamics of N2 molecules modeling obtained by the classical trajectory method, as well as data from a physical experiment on a shock tube are used.

To simulate molecular dynamics, the computer “MD Trajectory” complex was used. Computational experiments with theoretical models were performed in the environment of the Internet Catalog of physical and chemical processes models.

A new functional, depending on the translational temperature and expression for the empirical parameter of the Marrone-Treanor model was proposed based on the comparison. The modified model application allows describe the results of trajectory calculations in a wide range of translational temperatures from 2000 to 10000°K.

Keywords:

levels of description, dissociation, processes models, velocity constant, non-equilibrium factor, level factor, classical trajectories method, experiment

References

  1. Kustova E., Nagnibeda E., Oblapenko G., Savelev A., Sharaf/utdinov I. Advanced models for vibrational–chemical coupling in multi-temperature flows, Chemical Physics, 2016, vol. 464, pp. 1 – 13.

  2. Gidaspov V.Yu., Moskalenko O.A. Trudy MAI, 2016, no 90, available at: http://trudymai.ru/engpublished.php?ID=74647

  3. Nikitchenko Yu.A. Trudy MAI, 2014, no. 77, available at: http://trudymai.ru/eng/published.php?ID=52938

  4. Gidaspov V.Yu., Severina N.S. Numerical simulation of the detonation of a propane-air mixture, taking irreversible chemical reactions into account, High Temperature, 2017, vol. 55, no. 5, pp. 777 – 781.

  5. Chernyi G.G., Losev S.A. Fiziko-khimicheskie protsessy v gazovoi dinamike. (Physical and Chemical Processes in Gas Dynamics), Moscow, Nauchnyi mir, 2007, vol. 1, 400 p.

  6. Kovach E.A., Losev S.A., Sergievskaya A.L. Khimicheskaya fizika, 1995, vol. 14, no. 9, pp. 44 – 76.

  7. Savel’ev A.S., Kustova E.V. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 2015, vol. 2, no. 2, pp. 266 – 277.

  8. Kunova O., Kustova E., Savelev A. Generalized Treanor–Marrone model for state-specific dissociation rate coefficients, Chemical Physics Letters, 2016, vol. 659, pp. 80 – 87.

  9. Esposito F., Armenise I., Capitelli M. N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations, Chemical Physics, 2006, vol. 331, pp. 1 – 8.

  10. Boyd I., Kim J.G. State-resolved master equation analysis of thermochemical nonequilibrium of nitrogen, Chemical Physics, 2013, vol. 415, pp. 237 – 246.

  11. Scanlon T.J., White C., Borg M.K., Palharini R.C., Farbar E., Boyd I.D., Reese J.M., Brown R.E. Open-source direct simulation monte carlo chemistry modeling for hypersonic flows, AIAA Journal, 2015, vol. 53 (6), pp. 1670–1680, http://dx.doi.org/10.2514/1.J053370

  12. Losev S.A., Sergievskaya A.L., Spichkov A.V. Matematicheskoe modelirovanie, 2007, vol. 19, no. 12, pp. 13 – 24.

  13. Kovach E.A., Losev S.A., Sergievskaya A.L., Khrapak N.A. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 2010, vol. 10, pp. 1 – 95, available at: https://istina.msu.ru/publications/article/

  14. Smekhov G.D., Yalovik M.S. Khimicheskaya fizika, 1996, vol. 15, no. 4, pp. 17 – 35.

  15. Voronin A.I., Osherov V.I. Dinamika molekulyarnykh reaktsii (Molecular reaction dynamisc), Moscow, Nauka, 1990, – 420 p.

  16. Billing Gert D. Dynamics of molecule surface interactions, John Wiley & Sons, Inc. 2000, 235 p.

  17. Pogosbekyan M.Yu., Losev S.A. Khimicheskaya fizika, 2003, vol. 22, no. 6, pp. 38 – 46.

  18. Pogosbekian M.J., Sergievskaia A.L., Losev S.A. Verification of theoretical models of chemical exchange reactions on the basis of quasiclassical trajectory calculations, Chemical Physics, 2006, vol. 328, no. 1 – 3, pp. 371 – 378.

  19. Pogosbekyan M.Yu., Sergievskaya A.L. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 2014, vol. 15, no. 3, pp. 1 – 7.

  20. Lagana A., Garcia E. Temperature Dependence of N + N2 Rate Coefficients, Journal of Physical Chemistry A, 1994, vol. 98, pp. 502 – 507.

  21. Voevodin V.V., Zhumatii S.A., Sobolev S.I., Antonov A.S., Bryzgalov P.A., Nikitenko D.A., Stefanov K.S., Voevodin V.V. Otkrytye sistemy, 2012, no. 7, pp. 36 – 39.

  22. Krivonosova O.E., Losev S.A., Nalivaiko V.P. et at. Rekomenduemye dannye o konstantakh skorosti khimicheskikh reaktsii mezhdu molekulami, sostoyashchimi iz atomov N i O (Recomended data of rate constants for chemical reactions between molecules, consisting of N and O atoms), Moscow, Energoatomizdat, 1987, vol. 14, pp. 3 – 31.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход