Problematic questions of unsteady liquid flows modes organizing while liquid systems cavities cleansing

Fluid, gas and plasma mechanics


Аuthors

Krovjakov V. B.*, Korolenko V. V.**, Stepanov R. N.***, Greshnov A. S.****, Rachkov P. V.*****

MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin”, 54a, Starykh bol'shevikov, Voronezh, 394064, Russia

*e-mail: vlkrov@ramblerl.ru
**e-mail: vkmts@yandex.ru
***e-mail: ramon90@bk.ru
****e-mail: sergeig1@mail.ru
*****e-mail: Pa9sha@yandex.ru

Abstract

While performing studies in the field of improving technologies and equipment to ensure the required level of LHC induction chambers working cavities, it was found that hydrodynamic methods are the most effective from the viewpoint of quality and economy, and among them the washing method employing the unsteady fluid flow modes organization with optimal for each purification facility modes of pumping . Its disadvantage consists in the dependence of the pressure intensity and velocity oscillations, and, consequently, cleansing efficiency from the purification object design features and its geometric parameters. As the cavity being cleansed moves away from the source of vibrations their intensity decreases.

The results of the performed study allowed develop technical solution on the hydro-pulse cleansing of the HHS working cavities technology consisting in the fact that according to conventional cleansing technology by pumping through the internal cavities of the cleansed object in the unsteady mode. This unsteady mode is being created by the fluid flow rate changing from 0 to the value determined by the fluid pressure, not exceeding the pressure for the part being cleansed. A periodic change in the fluid flow rate in the maximum possible range, determined by the specified pressure, corresponds to the periodic change of its speed in the maximal possible range also.

Thus, the maximum possible velocity oscillations amplitude is reached, determining the flow degree of turbulence, tangential frictional stresses magnitude on the surface being cleansed, and other factors affecting the of contaminants breaking-off and removal intensity. In the process of studies, technical solutions on the proposed technology implementation were also developed.

Due to the insignificantly small fluid compressibility, all manipulations with its volumetric feed (and thus with speed) at the inlet of the product to be cleaned undergo infinitesimal changes as they move along the cavity of the product up to the outlet from it (unlike the pressure oscillations created by the change in the areas of the passage section). Hence, the cleansing liquid unsteady mode retains its maximum cleansing ability in all areas of the cavity being cleaned.

Keywords:

washing, cleansing, unsteady flow mode, industrial purity, working cavity, liquid system

References

  1. Rukovodstvo po predotvrashcheniyu letnykh proisshestvii v aviatsii Vooruzhennykh Sil SSSR (RPLP-90) (Manual on the Air Accidents Prevention in Aviation of the Armed Forces of the USSR), Moscow, Voenizdat, 1990, available at: http://czechlife.ru/rukovodstvo-po-predotvrascheniyu-letnyh-proisshestviy-v-aviacii-vooruzhennyh-sil-sssr/

  2. Rukovodstvo po predotvrashcheniyu aviatsionnykh proisshestvii s gosudarstvennymi vozdushnymi sudami v Rossiiskoi Federatsii (RPAP-2002) (Manual on the Air Accidents Prevention of the State Aircraft in the Russian Federation), Utverzhdeno prikazom MO RF 2002 g. № 390, Moscow, Voenizdat, 2003, available at: http://www.zakonprost.ru/content/base/part/84997

  3. Bainetov S.D. Vozdushno-kosmicheskaya oborona, 2009, no. 2 (45), available at: http://militaryarticle.ru/voenno-kosmicheskaya-oborona/2009/12581-problemy-bezopasnosti-poletov

  4. Bainetov S.D. Avia-Soyuz, 2017, available at: http://www.aex.ru/fdocs/2/2017/5/12/28293/

  5. Krovyakov V.B., Popov A.V., Koroteev A.Yu. et al. Aviatsionnaya promyshlennost’, 2017, no. 2, pp. 26.

  6. Nikitin G.A., Chirkov S.V. Vliyanie zagryaznennosti na nadezhnost’ raboty gidravlicheskikh sistem letatel’nykh apparatov (Pollution impact on the aircraft hydraulic systems reliability), Moscow, Transport, 1969, 138 p.

  7. Belyanin P.N., Danilov V.M. Promyshlennaya chistota mashin (Industrial cleanliness of machines), Moscow, Mashinostroenie, 1982, 224 p.

  8. Timirkeev R.G., Sapozhnikov V.M. Promyshlennaya chistota i tonkaya fil’tratsiya rabochikh zhidkostei letatel’nykh apparatov (Industrial purity and fine filtration of aircraft working fluids), Moscow, Mashinostroenie, 1986, 152 p.

  9. Bainetov S.D. Aviapanorama, 2016, no. 4 (118), 2016, available at: http://aviapanorama.ru/2016/08/sovremennyj-vzglyad-na-formirovanie-koncepcii-bezopasnosti-poletov-av...

  10. Sanchugov V.I., Reshetov V.M., Turusin S.V. Izvestiya Samarskogo nauchnogo tsentra RAN, 2014, vol. 16, no. 4, pp. 233 – 239.

  11. Proizvodstvo gidrogazovykh i toplivnykh sistem. Chast’ 2. Montazh, kontrol’ i ispytanie gidrogazovykh i toplivnykh sistem. Rukovodyashchie tekhnicheskie materialy RTM-1.4.535-89 (Hydro-gas and fuel systems production. Part 2. Installation, monitoring and testing of hydro-gas and fuel systems). Rukovodyashchiye tekhnicheskiye materialy RTM-1.4.535-89), Moscow, NIAT, 1991, 243 p.

  12. Sapozhnikov V.M. Montazh i ispytanie gidravlicheskikh i pnevmaticheskikh sistem letatel’nykh apparatov (Installation and testing of aircraft hydraulic and pneumatic systems), Moscow, Mashinostroenie, 1979, 256 p.

  13. Nekrasov B.B. Gidravlika i ee primeneniya na letatel’nykh apparatakh (Hydraulics and its applications on aircraft), Moscow, Mashinostroenie, 1967, 265 p.

  14. Vorozhtsov O.V. Gidravlika s primerami resheniya zadach (Hydraulics with examples of problems solving: Educational-methodical manual), Pskov, PGPI, 2008, 137 p.

  15. Krovyakov V.B., Koroteev A.Yu., Yalpaev A.A. et al. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75588

  16. Krovyakov V.B. Patent SU 2552450. 2015. URL: http://www.findpatent.ru/patent

  17. Krovyakov V.B., Biryukov M.I. Patent SU 132846, 2013, available at: http://poleznayamodel.ru/model/13/132846.html

  18. Krovyakov V.B., Krovyakova I.E. Patent SU 1149062, 1993, available at: http://www1.fips.ru/fips_servl/fips_servlet.

  19. Krovyakov V.B., Korolenko V.V. Patent SU 102559, 2017, available at: http://www1.fips.ru/fips_servl/fips_servlet.

  20. Ivanov V.G., Remezov A.S., Krovyakov V.B. Lokomotiv, 2015, no. 1, pp. 11 – 13.

  21. Chistota promyshlennaya. Klassy chistoty zhidkostei. State Standard 17216-2001, 2003 (Purity is industrial. Classes of purity of liquids, State Standard17216-2001, 2003), Moscow, Standarty, 2003, available at: http://docs.cntd.ru/document/1200028882

  22. Chistota promyshlennaya. Ustanovlenie norm promyshlennoi chistoty pri razrabotke, proizvodstve i ekspluatatsii produktsii. GOST R 51610-2000, 2001 (Industrial purity. Establishment of norms of industrial purity in the development, production and operation of products, State Standard R 51610-2000, 2001), Moscow, Standarty, available at: http://gostexpert.ru/gost/gost-51610-2000

  23. Zolotov A.A., Nurullaev E.D. Trudy MAI, 2013, no. 64, available at: http://trudymai.ru/eng/published.php?ID=36457


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход