Videogrammetry system for contactless measurements of large-size objects deformation fields

Design, construction and manufacturing of flying vehicles


Kuruliuk K. A.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky, TsAGI, 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia



Large-size engineering objects under operation are subjected to various stresses, leading to considerable deformations. Normal functioning, strength and safety of such objects is achieved through thorough studies and testing, in which methods and tools for measuring geometric motion and deformation parameters play an important role. Particularly, in recent years, the problems of deformations measuring of aircraft large-sized models and structural elements arose. One of the promising measuring methods for solving this type of problems is optical method of videogrammetry (VGM), combining modern means of optics, digital image recording, numerical image processing and mathematical analysis. High information value of the VGM method is stipulated by the fact that one image allows getting information on hundreds and thousands of points of an object simultaneously. At the same time, it was necessary to create a mobile measuring system which would not be associated with particular experimental installation or wind tunnel, and which could be quickly applied in different conditions to measure deformation of full-scale aircraft elements while their ground testsand in flight.

The purpose of this work consists in improving videogrammetry method and developing a mobile measuring videogrammetry system (VGM system) to ensure non-contact measurements and visualization of distributed deformations of large-size objects in engineering, as well as expanding this method’s application area. A step-by-step measuring technique employing one digital camera was stated and developed. A two-stage of a measuring system calibration technique was developed.

Control tests of mobile VGM system sample were carried out for measuring deformations of natural wing of a new transport aircraft sample under operating test bench conditions during industrial ground life tests. The maximum measurements distance was of 26 m. The root-mean-square error of normal deviations of points did not exceed 2.5 mm.

This work was performed within the framework of the “Development of mobile videogrammetry measuring system for operational non-contact measurements and visualization of distributed deformations” Project according to the Grant from Moscow Region Government in the fields of science, technology and innovation.


videogrammetry method, contactless measurements, life cycle tests, normal deformations, deformation fields


  1. Garibaldi A.V., Kulesh V.P. Contactless measurements with high point density and the construction of three-dimensional numerical models of complexly shaped bodies, Measurement Techniques, 2011, vol. 54, no. 1, pp. 25 – 30.

  2. Knyaz’ V.A. Yubileinaya 25-ya Mezhdunarodnaya nauchnaya konferentsiya «GRAFIKON’ 2015». Sbornik trudov. (Protvino, 22-25 sentyabrya 2015), Protvino, Institut fiziko-tekhnicheskoi informatiki, 2015, pp. 232 – 236.

  3. Vic-3D 2007 Testing Guide (Sorrelatedsolutions, USA), available at:

  4. Tret’yakova T.V., Tret’yakov M.P., Vil’deman V.E. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Mekhanika, 2011, no. 2, pp. 92 – 100.

  5. Cecchi E., van Wyk de Vries B., Lavest J.M., Harris A., Davies M. N-view reconstruction: a new method for morphological modelling and deformation measurement in volcanology, Journal of Volcanology and Geothermal Research, 2003, vol. 123, no. 1–2, pp. 181–201.

  6. Farnood Ahmadi F. Integration of industrial videogrammetry and artificial neural networks for monitoring and modeling the deformation or displacement of structures, Neural Computing & Applications, 2017, vol. 28, no. 12. pp. 3709 – 3716.

  7. Kulesh V.P., Fonov S.D. Uchenye zapiski TsAGI, 1998, vol. XXIX, no. 1-2, pp. 165 – 176.

  8. Burner A.W., Tianshu Liu. Videogrammetric model deformation measurement technique, Journal of Aircraft, 2001, vol. 38, no.4, pp. 745 – 754.

  9. Kuruliuk K.A., Kulesh, V.P. Non-contact measurement of helicopter device position in wind tunnels with the use of optical videogrammetry method, AIP Conference Proceedings, 13 October 2016, vol. 1770, issue 1, available at:

  10. Nathan A. Pitcher, Jonathan T. Black, Mark F. Reeder, and Raymond C. Maple. Videogrammetry dynamics measurements of a lightweight flexible wing in a wind tunnel, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, May 2009, AIAA Paper 2009-2416, available at:

  11. Kulesh V.P., Kurulyuk K.A. XXVII nauchno-tekhnicheskaya konferentsiya po aerodinamike. Sbornik trudov, (Zhukovskii, Moskovskaya oblast’, 21-22 aprelya 2016), Zhukovskii, TsAGI, 2016, pp. 152.

  12. Kulesh V.P. Uchenye zapiski TsAGI, 2014, vol. 45, no. 6, pp. 100 – 109.

  13. Efimov A.I., Il’in V.N. Trudy MAI, 2017, no. 95, available at:

  14. Zachary M. Moratto, Michael J. Broxton, Ross A. Beyer, Mike Lundy and Kyle Husmann. Ames Stereo Pipeline, NASA’s Open Source Automated Stereogrammetry Software, 41st Lunar and Planetary Science Conference, 2010, available at:

  15. Henrik Persson. Estimation of Forest Parameters Using 3D Satellite Data: Stereogrammetry, radargrammetry and interferometry, SLU Service/Repro, Uppsala/Alnarp, 2014, available at:

  16. Busarova M.V., Kulesh V.P. Deformation measurements of the wing with elastic operating control in wind tunnel flow, International Conference on the Methods of Aerophysical Research, 1 January 2016, American Institute of Physics, vol. 1770, doi:10.1063/1.4963988

  17. Ignatiev K.I, Stock S.R., Lee W.-K., Fezzaa K. Philosophical Magazine, 2005, vol. 85, no. 28, pp. 3273 – 3300.

  18. Nazarov A.S. Fotogrammetriya (Photogrammetry), Minsk, TetraSistems, 2010, 398 p.

  19. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Mathematics Handbook), Moscow, Nauka, 1984, 831 p.

  20. Mr.B. Mathankumar, Mrs.S. Jeyanthi. Implementation of fast normalized cross correlation algorithm for large scale image search, International Journal of Engineering Research and General Science, 2014, vol. 2, no. 6, pp.628 – 636, available at:

Download — informational site MAI

Copyright © 2000-2021 by MAI