Glass elements fabrication technology analysis for space elements thermo-optical covering

Design, construction and manufacturing of flying vehicles


Аuthors

Vyatlev P. A.1*, Goncharov K. A.1**, Sigaev V. N.2***, Sysoev V. K.1****, Yudin A. D.1*****

1. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia
2. Dmitry Mendeleev University of Chemical Technology of Russia , 9, Miusskaya sq., Moscow, 125047, Russia

*e-mail: vyatlev@laspace.ru
**e-mail: heatpipe@laspace.ru
***e-mail: vlad.sigaev@gmail.com
****e-mail: SysoevVK@laspace.ru
*****e-mail: yudin@lasapace.ru

Abstract

A spacecraft (SC) thermal conditions ensuring is associated with thermo controlling coating selection. The coating type of the «solar reflectors» class is intended for application on the radar surfaces, ensuring extra heat removing into surrounding outer space in conditions of these surfaces’ contemporaneous irradiation by the Sun. The K-208Cp thermoregulation coating represents the plates of optically transparent glass K-208 of 150 ± 20 microns thickness with sizes of 20×20 mm, 25×25 and 40×40 mm, with electrically conductive coating on one side and silver and stainless steel layers on the other side, successively applied in vacuum. These plates are glued to the hull by the metallized side. The article presents the system analysis of fabrication of the glass elements for this coating.

Glass elements require several stages of manufacturing technology. The article describes all stages of production. High demands are placed on the glass elements geometric parameters. They are the plate sizes, glass elements quality and flatness fault. Long-term studies helped to establish the optimal temperature regime at which the change the glass elements shape does not occur.

The cycle of manufacturing technology includes chemical hardening processes. The main problem of application of glasses is their weak mechanical strength. A simple and effective method of the glass plates hardening is the method of low-temperature ion exchange.

Keywords:

spacecraft, thermal control system, thermo-optical coating, glass elements fabrication technology

References

  1. Finchenko V.S., Kotlyarov E.Yu., Ivankov A.A. Sistemy obespecheniya teplovykh rezhimov avtomaticheskikh mezhplanetnykh stantsii (Systems for automatic interplanetary stations thermal conditions ensuring), Khimki, NPO Lavochkina, 2018, 400 p

  2. .Malozemov V.V., Kudryavtseva N.S. Sistemy termoregulirovaniya kosmicheskikh apparatov (Space vehicles thermoregulation systems), Moscow, Mashinostroenie, 1995, 192 p.

  3. Laub B., Venkatapathy E. Thermal protection system technology and facility needs for demanding future planetary missions, European Space Agency, ESA SP-544, Noordwijk, Netherlands, ESA Publications Division, ISBN 92-9092-855-7, 2004, pp. 239 – 247.

  4. Gilmore D.G. et al. Thermal design examples Spacecraft Thermal Control Handbook, vol. 1, Fundamental Technologies, El Segundo, CA, Aerospace Press, 2002, Chapter 3, pp. 71 – 137.

  5. Donabedian M., Gilmore D.G. et al. Thermal design examples Spacecraft Thermal Control Handbook, vol. 1, Fundamental Technologies, El Segundo, CA, Aerospace Press, 2002, Chapter 5, pp. 161 – 205.

  6. Panin Yu.V., Korzhov K.N. Trudy MAI, 2012, no. 80, available at: http://trudymai.ru/eng/published.php?ID=56875

  7. Anurov A.E. Trudy MAI, 2012, no. 45, available at: http://trudymai.ru/eng/published.php?ID=25328

  8. Safronov A.A. Trudy MAI, 2012, no. 65, available at: http://trudymai.ru/eng/published.php?ID=35841

  9. Svechkin V.P., Savel’ev A.A., Sokolova S.P., Borozdina O.V. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 2 (17), pp. 99 – 107.

  10. Lipat’ev A.S., Mamadzhanova E.Kh., Ryzhenkov B.C., Vyatlev P.A., Sysoev B.K., Sigaev V.N. Uspekhi v khimii i khimicheskoi tekhnologii, 2011, vol XXV, no. 5 (121), pp. 93 – 97.

  11. Price M. Kitchin C., Eaves H., Crabb R., Buia P. Solar Cell Coverglasses for Satellites in the Intermediate Earth Orbit , 5th European Space Power Conference Proceedings, Tarragona, Spain, 21- 25 September, 1998. URL: http://adsabs.harvard.edu/full/1998ESASP.416..569P

  12. Johnston C.O., Hollis B.R., Sutton K. Nonequilibrium Stagnation-Line Radiative Heating for Fire II, Journal of Spacecraft and Rockets, 2008, vol. 45, no. 6, pp. 1185 – 1195.

  13. Vyatlev P.A. XXXI Vserossiiskaya nauchno – tekhnicheskaya konferentsiya “Aktual’nye problemy raketno-kosmicheskogo priborostroeniya i informatsionnykh tekhnologii”. Tezisy konferentsii, (Korolev, 28-30 April 2008), Moscow, FGUP RNIIKP, 2008, pp. 33.

  14. Gorodetskii L.A., Kovtun B.C., Sokolova S.P. Izvestiya RAN. Energetika, 2011, no. 3, pp. 23 – 36.

  15. Sysoev V.K. Lazernaya obrabotka oksidnykh stekol (Laser treatment of oxide glasses), Moscow, RKhTU im. D.I. Mendeleeva, 2011, 136 p.

  16. Sysoev V.K. Uspekhi v khimii i khimicheskoi tekhnologii, 2011, vol. 25, no. 5, pp. 93 – 97.

  17. Vyatlev P.A., Sergeev D.V., Sigaev V.N. Sysoev V.K., Shulepov A.V. Pis’ma o materialakh, 2017, no. 7(1), pp. 64 – 74.

  18. Vyatlev P.A. V mezhdunarodnaya konferentsiya “Issledovanie, razrabotka i primenenie vysokikh tekhnologii v promyshlennosti”. Trudy konferentsii, (Sankt-Peterburg, 28-30 April 2008), Moscow, MGU, 2008, vol. 12, pp. 167 – 168.

  19. Butaev A.M. Prochnost’ stekla, ionoobmennoe uprochnenie (Glass strength, ion-exchange strenghtening), Makhachkala, Izd-vo DGU, 1997, 133 p.

  20. Ernsberger F.M. Prochnost’ i uprochnenie stekla (Strength and hardening of glass), Moscow, Mir, 1969, 340 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход