Models and algorithms for a communication spacecraft dynamic radio resource backing-up while servicing non-stationary information streames with account for delay in control

Systems, networks and telecommunication devices


Kovalsky A. A.*, Zinnurov S. H.**

Military spaсe Akademy named after A.F. Mozhaisky, 13, Zdanovskaya str., Saint Petersburg, 197198, Russia



The goal of operative satellite repeater’s radio resource distribution (reservation)is set as the nonlinear programming problem, and the example of its solution while servicing a non-stationary message stream formed by the group of voice subscribers is given.

Modulated Markov process and its special case, called interrupted Poisson process are used as a model of non-stationary message stream formed by voice subscribers, with account for signal suppression during pauses. Modulated Markov process mathematical model of a servicing process with the time lag while of additional channels connection was developed as a three-dimensional Markov chain. Algorithm of this problem solution was developed, and the example for the case, when the ingress flow was being formed by only one subscriber, is presented.

The object of the study is channeling equipment of a ground station of a communication satellite, which employs a communication spacecraft for the channels radio resource organizing. An object of the study is a technology of backing-up a communication spacecraft radio resource. The research objective is directed to the capacity growth of the ground station of satellite communication, due to the choice of optimum value, the backed-up radio resource for each direction of communication.

The simulation model of dynamic back-up of a communication spacecraft radio resource, based on the software product recommended for performing scientific research in the field of mathematical and simulation modeling, namely Matlab/Simulink/SimEvents, together with the interactive building tool for complex Stateflow models was developed and described. The Stateflow software product based on the theory of finite state machines and queuing systems application is intended for logical queuing systems design.

The developed approach to managing of communication satellite’s limited resource distribution, allows achieve substantial advantage savings (about 30%) of the communication satellite radio resource, due to its dynamic redistribution between the radio communication directions.


communication spacecraft, dynamic back-up, radio resource, ground station interrupted Poisson stream, modulated Markov process, non-stationary information stream, voice traffic


  1. Antonyan A.B. Vestnik svyazi, 1999, no. 5, pp. 68 – 71.

  2. Bae J.J., Suda T. Survey of Traffic Control Schemes and Protocols in ATM Networks, Proc. IEEE, 1991, vol. 79, no. 2, pp. 170 – 186.

  3. Chandra K. Statistical Multiplexing. The Wiley Encyclopedia of Telecommunications, John Wiley & Sons Publication, 2002, vol. 5, pp. 2420 – 2432.

  4. Cox C. An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Communications, John Wileu & Sons Ltd, 2012, 337 p.

  5. Kogan A.V. Tekhnologii i sredstva svyazi, 2001, no. 1, pp. 78 – 84.

  6. Petrov V.V. Struktura teletrafika i algoritm obespecheniya kachestva obsluzhivaniya pri vliyanii effekta samopodobiya (Teletraffic Structure and Service Quality Ensuring Algorithm at Self-Similarity Effect Impact): Doctor’s thesis. Moscow, 2004, 199 p.

  7. Michiel H., Laevens K. Teletraffic Engineering in a Broad-Band Era, Proc. IEEE, 1997, vol. 85, no 12, pp. 2007 – 2033.

  8. Shelukhin O.I., Luk’yantsev N.F. Tsifrovaya obrabotka rechi (Digital Speech Processing), Moscow, Radio i sviaz’, 2000, 256 p.

  9. Bazaraa M.S., Shetty C.M. Nonlinear Programming: Theory and Algorithms, N. Y., John Wiley & Sons, 1979, 872 p.

  10. Koval’skii A.A., Tereshchenko S.V., Shapovalov A.A. Trudy Voenno-kosmicheskoi akademii im. A.F. Mozhaiskogo, 2016, no. 654, pp. 34 – 42.

  11. Koval’skii A.A. Trudy MAI, 2016, no. 90, available at:

  12. Koval’skii A.A. Sistemy upravleniya, svyazi i bezopasnosti, 2017, no. 1, pp. 175 – 212.

  13. Kuzichkin A.V., Zinnurov S.Kh., Koval’skii A.A. Prikladnaya fizika i matematika, 2014, no. 6, pp. 8 – 14.

  14. Kuzichkin A.V., Zinnurov S.Kh., Koval’skii A.A. Inzhenernaya fizika, 2015, no. 6, pp. 49 – 57.

  15. Toporkov I.S., Koval’skii A.A., Zinnurov S.Kh. Izvestiya instituta inzhenernoi fiziki, 2016, vol. 1, no. 39, pp. 37 – 47.

  16. Novikov E.A. Informatsionno-upravlyayushchie sistemy, 2014, vol. 2, no. 69, pp. 79 – 86.

  17. Novikov E.A. Radiotekhnicheskie i telekommunikatsionnye sistemy, 2014, no. 3, no. 15, pp. 62 – 69.

  18. Shelukhin O.I., Tenyakshev A.M., Osin A.V. Modelirovanie informatsionnykh system (Information systems modeling), Moscow, Radiotekhnika, 2005, 368 p.

  19. Makarenko S.I. Infokommunikatsionnye tekhnologii, 2007, vol. 5, no. 3, pp. 95 – 96.

  20. Kikhtenko A.V., Makarenko S.I. Sistemy upravleniya i informatsionnye tekhnologii, 2007, vol. 27, no. 1.3, pp. 344 – 348.

  21. Adas A. Traffic models in broadband networks, IEEE Communication magazine, 1997, vol. 35, no. 7, pp. 82 – 89.

  22. Muscariello L. Markov models of internet traffic and a new hierarchical MMPP model, Computer communications, 2005, vol. 28, no. 16, pp. 1835 – 1851.

  23. Kleinrock L. Queueing Systems: Volume II – Computer Applications, New York, Wiley Interscience, 1975, 576 p.

  24. Novikov E. A., Makarenko S. I. Radiotekhnicheskie i telekommunikatsionnye sistemy, 2013, vol. 1, no. 9, pp. 43 – 52.

  25. Bakhtin A.A., Omel’yanchuk E.V., Semenova A.Yu. Trudy MAI, 2017, no. 96, available at:

  26. Genov A.A., Osipov V.V., Savilkin S.B. Trudy MAI, 2016, no. 87, available at:

Download — informational site MAI

Copyright © 2000-2021 by MAI