Computational and experimental study of air bleeding from the compressor intermediate stage effect on its characteristics

Thermal engines, electric propulsion and power plants for flying vehicles


Kizeev I. S.*, Kozhemyako P. G., Ezrokhi Y. A.**

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia



Recently in connection with the studies of three-stream schemes of adaptive cycle engines the fan with air bleeding is considered as a basic part of three-stream adaptive engines. The values of such bleedings herewith can reach 15-20 % and more. Under such conditions, this pressuring element representation as a set of two compressor stages (the first – from the inlet to the bleeding point, the second – from the bleeding point to the outlet), with their own characteristics independent from the bleeding value, may lead to significant errors in determining integral characteristics of a power plant with a three-stream engine. In this connection, the problem of adequate characteristics setting of such adaptive fan acquires considerable importance.

The article presents the results of a compressors characteristics behavior changing estimation as a result of the air bleeding from an intermediate stage. Physical bases of the air bleeding effect on vane machines characteristics are presented as well.

Two compressors with different numbers of stages are considered: the three-stage compressor with air bleeding of 0 to 15% from behind the first or second stage (relative to the air consumption at the compressor inlet), and the six-stage with compressor with air bleeding of 0 to 10% from behind the third stage.

The obtained results of numerical computation and experimental data revealed that the additional air bleeding at maximum frequencies did not lead to the pressure line shift of a group of stages to the bleeding point. However, the pressure lines of the stages beyond the bleeding point were being shifted to the right and downward with the increase in the bleed air. At the lower rotation frequencies, the additional air bleeding did not lead to the pressure line shift for the first group, but it led to the significant shift of the pressure line to the right and upward for the second group.

This stratification of the pressure lines of the second group, following the bleeding point, can be explained as follows. While tapping a part of propellant from the multistage compressor airflow duct the operating point shifts right and downward (or downward in case of vertical branch) on the pressure line of the characteristic of the first group of stages by the lower values of pressure ratio, ensuring lower temperature levels of the air fed to the inlet of the second group of stages. This leads to the operating point shift on characteristic of the second group towards the larger reduced values of air consumption. Besides, the impact of non-uniform field of parameters at the inlet of this group of stages, appeared due to the air bleeding at the peripheral area of the blades, leads to the operating point shift in the same direction.


compressor, compressor characteristics, pressure line, compressor efficiency, air tapping


  1. Sha M., Agul’nik A.B., Yakovlev A.A. Trudy MAI, 2017, no. 93, available at:

  2. Leitner M.W., Zippel M., Staudacher S. The interaction of tip leakage flow with incoming flow in a compressor cascade, Deutscher Luft- und Raumfahrtkongress – 2016, available at:

  3. Merkl E. Uhbr aero engines, technologien für die nächste triebwerksgeneration (enoval), Deutscher Luft- und Raumfahrtkongress – 2016, available at:

  4. Grois A. Entwicklung eines numerischen simulationsverfahrens zur modellierung einer verdichterströmung in einem generischen zweiwelligen turbofan triebwerk, Deutscher Luft- und Raumfahrtkongress – 2016, available at:

  5. Druzhinin I., Rossikhin A., Mileshin V. Computational investigation of aerodynamic and acoustic characteristics of counter rotating fan with ultra high bypass ratio, 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, 2017, ETC2017-146, available at:

  6. Thomas G. Sylvester, Robert J. Brown, Colin F. O’Connor. F-35B Lift Fan Inlet Development, AIAA Centennial of Naval Aviation Forum «100 Years of Achievement and Progress», 21 – 22 September 2011, Virginia Beach, VA, available at:

  7. A. Joksimović, S. Duplaa, Y. Bousquet, X. Carbonneau, N. Tantot. Local and global analysis of a variable pitch fan turbofan engine, 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC12, April 3-7, 2017; Stockholm, Sweden, available at:

  8. Gurevich O.S., Gol’berg F.D., Zuev S.A., Busurin V.I. Trudy MAI, 2017, no. 93, available at:

  9. Sean T Ford. Aerothermodynamic cycle design and optimizatoin method for aicraft engines, A Thesis Presented to The Academic Faculty In Partial Fulfillment of the Requirements for the Degree Masters of Science in the School of Aerospace Engineering, Georgia Institute of Technology, December 2014, available at:

  10. Guy Norris. USAF Confirms Sixth-Gen Fighter Engine Awards // Aerospace Daily & Defense Report, 2016, available at:

  11. Ya Lyu, Hailong Tang, Min Chen. A Study on Combined Variable Geometries Regulation of Adaptive Cycle Engine during Throttling, MDPI, Applied Sciences, 2016, available at:

  12. Joseph W. Connolly, David Friedlander, George Kopasakis. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Propulsion and Energy Forum, July 28-30, 2014, Cleveland, available at:

  13. George Kopasakis, Joseph W. Connolly, Jonathan Seidel. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Propulsion and Energy Forum, July 28-30, 2014, Cleveland, available at:

  14. Drygin A.S., Kizeev I.S., Ezrokhi Yu.A. Nauka i Obrazovanie, 2017, no. 3, pp. 116 – 136, doi: 10.7463/0317.0000964

  15. Kikot’ N.V., Kretinin G.V., Leshchenko I.A., Fedechkin K.S. Trudy XLII akademicheskikh chtenii po kosmonavtike, posvyashchennykh pamyati akademika S.P. Koroleva (Moscow, 23-26 January 2018), Moscow, MGTU im. N.E. Baumana, 2018, pp. 293.

  16. Leshchenko I.A., Shmotin Yu.N., Fedechkin K.S., Kikot’ N.V. Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Aviadvigateli XXI veka». Tezisy dokladov. (Moscow, 24-27 November 2015), Moscow, TsIAM, 2015, pp. 77 – 79.

  17. Ezrokhi Yu.A., Drygin A.S., Kizeev I.S., Selivanov O.D., Fokin D.B. Trudy MAI, 2018, no. 99, available at:

  18. Berne L.P. Kak vse nachinalos’ (How all began), Moscow, Dvigatel’, 2013, 464 p.

  19. Kazandzhan P.K. et al. Teoriya reaktivnykh dvigatelei (Jet engines theory), Moscow, Voennoe izdatel’stvo Minoborony SSSR, 1955, 296 p.

  20. Kholshchevnikov K.V. Teoriya i raschet aviatsionnykh lopatochnykh mashin (Theory and calculation of aviation impeller machines), Moscow, Mashinostroenie, 1970, 614 p.

  21. Antonyuk L.M., Marusenko V.S. Teoriya gazoturbinnykh dvigatelei (Gas-turbine engines theory), Moscow, Izd-vo MAI, 1998, Ch.1, 163 p.

  22. Nechaev Yu.N., Fedorov R.M., Kotovskii V.N., Polev A.S. Teoriya aviatsionnykh dvigatelei (Aircraft engines theory), Moscow, Izd-vo VVIA im. prof. N.E. Zhukovskogo, 2005, Ch. 1, 366 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI