The flame tube head perforated cowl impact on the main characteristics of the gas turbine engine combustion chamber

Thermal engines, electric propulsion and power plants for flying vehicles


Baklanov A. V.1*, Makarova G. F.2, Vasil'ev A. A.2**, Nuzhdin A. A.2

1. Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia
2. Kazan Motor Production Association, 1, Dementyeva str., Kazan, 420036, Russia



The combustion chamber main parameters are the pressure losses, the unevenness of the temperature field in the outlet, and ecological characteristics. While the combustion chamber refinement for specific parameters it is rational to introduce changes in the design, and impact thereby the processes occurred in it. Very often, to reduce the flame tube resistance the designers resort to installing the perforated cowl, which reduces the frontal impact and distributes the air to the outer and inner cavities between the hull and the flame tube, ensuring minimal pressure losses. The presented article considers the impact of the flame tube head perforated cowl installation on the changes of the indicated parameters. The design of the perforated cowl is considered and the apertures number and diameter as well as the cowl fillet radius are listed. The structure of the test bench installation, with which the combustion chamber section was tested, as well as regimes at which these tests were performed, are presented. The results were obtained for the section with the cowl and without it. The analysis was performed, which results allowed drawing inferences on the necessity of the flame tube head header cowl in the full-scale combustion chamber. The results of the experiments revealed also that the flame tube head header cowl installing did not deteriorate the hydraulic losses in the combustion chamber, but appeared to be highly effective in terms of temperature reduction in the flow core at the section outlet.

The cowl installation leads to the air redistribution in such a way that its consumption in the burning area increases and leads to the temperature reduction in the flow core. The temperature reduction in the burning zone was obligatory affected the nitrogen oxides (NOx) reduction. The cowl did not affect the combustion efficiency, and the carbon oxides concentration in the combustion products increased herewith.


combustion chamber, gas-turbine engine, the flame tube perforated cowl


  1. Schlüter J., Schönfeld T., Poinsot T., Krebs W., Hoffmann S. Characterization of confined swirl flows using large eddy simulations, ASME Turbo Expo 2001: Power for Land, Sea, and Air (New Orleans, Louisiana, USA, June 4-7, 2001), 2001, vol. 2, pp. V002T02A027. DOI: 10.1115/2001-GT-0060.

  2. Harrison W.E., Zabarnick S. The OSD Assured Fuels Initiative – Military Fuels Produced from Coal, DoE Clean Coal Conference, Clearwater, FL, June 2007.

  3. Lieuwen T., McDonell V., Petersen E., Santavicca D. Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability, ASME Journal of Engineering for Gas Turbines and Power, 2008, vol. 130 (1), pp. 011506.

  4. Moses C., Roets P. Properties, Characteristics and Combustion Performance of Sasol Fully Synthetic Jet Fuel, ASME Journal of Engineering for Gas Turbines and Power, 2009, vol. 131, no. 4, 041502-041502-17.

  5. Markushin A.N., Baklanov A.V. Trudy MAI, 2018, no. 99, available at:

  6. Markushin A.N., Baklanov A.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2013, no. 3, pp. 131 – 138.

  7. Markushin A.N., Merkushin V.K., Byshin V.M. Baklanov A.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2009, no. 3, pp. 50 – 53.

  8. Lieuwen T.C. and Yang V. Combustion Instabilities in Gas Turbine Engines, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2005, vol. 210, 657 p.

  9. Kiesewetter F., Konle M. and Sattelmayer T. Analysis of Combustion Induced Vortex Breakdown Driven Flashback in a Premix Burner with Cylindrical Mixing Zone, ASME Journal of Engineering for Gas Turbines and Power, 2007, vol. 129, pp. 929 – 936.

  10. Danil’chenko V.P., Lukachev S.V., Kovylov Yu.L. et al. Proektirovanie aviatsionnykh gazoturbinnykh dvigatelei (Design of aircraft gas turbine engines), Samara, Izd-vo SNTs RAN, 2008, 620 p.

  11. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, CRC Press, 2010, 537 p.

  12. Metechko L.B., Tikhonov A.I., Sorokin A.E., Novikov S.V. Trudy MAI, 2016, no. 85, available at:

  13. Gupta A.K., Lilley D.G., Syred N. Swirl Flows. Energy and engineering science series, Abacus Press, 1984, 475 p.

  14. Lanskii A.M., Lukachev S.V., Kolomzarov O.V. Vestnik Moskovskogo aviatsionnogo institutа, 2016, vol. 23, no. 3, pp. 47 – 57.

  15. Durbin M.D., Vangsness M.D.,.Ballal D.R, Katta V.R. Study of Flame Stability in a Step Swirl Combustor, Journal of Engineering for Gas Turbines and Power, 1996, vol. 118, no. 2, pp. 308 – 315.

  16. Gokulakrishnan P., Fuller C.C., Klassen M.S., Joklik R.G., Kochar Y.N., Vaden S.N., Seitzman J.M. Experiments and modeling of propane combustion with vitiation, Combustion and Flame, 2014, vol. 161, no. 8, pp. 2038 – 2053.

  17. Lefebvre A.H. Fuel effects on gas turbine combustion-ignition, stability, and combustion efficiency, Journal of Engineering for Gas Turbines and Power, 1984, vol. 107, pp. 24 – 37, doi:10.1115/1.3239693.

  18. Taylor S.C. Burning Velocity and the Influence of Flame Stretch, University of Leeds, 1991, 332 p.

  19. Yi T., Gutmark E.J. Real-time prediction of incipient lean blowout in gas turbine combustors, AIAA Journal, 2007, vol. 45, no. 7, pp. 1734 – 1739.

  20. Kanilo P.M. Energeticheskie i ekologicheskie kharakteristiki GTD pri ispol’zovanii uglevodorodnykh topliv i vodoroda (Energy and environmental characteristics of gas turbine engines when using hydrocarbon fuels and hydrogen), Kiev, Naukova dumka, 1987, 224 p.

Download — informational site MAI

Copyright © 2000-2024 by MAI