Analysis of the "ear-plugˮ type structure operation by the finite elements method and by the contact problem of elasticity theory solution

Dynamics, strength of machines, instruments and equipment


Turanov R. A.1*, Pykhalov A. A.2**

1. Irkutsk National Research Technical University, 83, Lermontov str., Irkutsk, 664074, Russia
2. Irkutsk State Transport University, 15, Chernyshevsky str., Irkutsk, 664074, Russia



The wing to fuselage connection is one of the most critical part of any aircraft. Here, in most cases, the wing represents the main bearing surface, and the fuselage is the load. With the wing design complication, such as a caisson type, the urgent task of analyzing its fastening elements with the fuselage arises to obtain the most advantageous design in terms of mass and reliability. This problem has been traditionally solved by of empirical methods. This solution can be significantly expanded employing highly efficient theoretical methods that allow analyzing both the parts stress-strain state (SSS), and their conjugation conditions.

The results of experimental studies presented in the works of E.V. Ryzhov [7], show that while the joint structure loading, out of the total amount of deformations 80% from them are those at the parts joints, and only 20% are deformations of the parts themselves. Thus, in contrast to its monolithic analogue the operability of the prefabricated structure is determined by both the strength of the parts and the conditions of their conjugation (layout) aimed at ensuring the minimum level of stress concentration in the joints assemblies of the aircraft structure.

With the empirical approach, when solving design problems of this type, there is a need to create a large number of field test samples. As a result, the total and time costs are rather large. With the advent of modern computational technologies based on FEM, new computational techniques have appeared that allow the most detailed study of the perception of mechanical loads in the aircraft’s structural elements. They include the structural elements connecting the aircraft’s wing to the fuselage, which main component is the ear-plug design. Under certain operation conditions of the product (aircraft) the stress field in the presented structures attains the unevenness of a high gradient.

Thus, the task is relevant, and its implementation is possible by the finite element method and employing the solution of the contact problem of a solid deformable body, by building a finite element model and introducing a contact joint between the node elements (fork, ear, bolt, nut).

The basis of the design is an empirical method for calculating the stress-strain state of a fixed plug-type “Ear-plug” type, which is employed as a test object in this work.


aircraft, ear-plug connection, finite elements, stress-strain state


  1. Aleksandrov V.M., Chebakov M.I. Analiticheskie metody v kontaktnykh zadachakh teorii uprugosti (Analytical methods in contact problems of the elasticity theory), Moscow, FIZMATLIT, 2004, 304 p.

  2. Astakhov M.F.. Karaval’tsev A.V. et al. Spravochnaya kniga po raschetu samoleta na prochnost’ (Reference book on the aircraft stress calculation), Moscow, Gosudarstvennoe izdatel’stvo oboronnoi promyshlennosti, 1954, 648 p.

  3. Voit E.S., A.I. Endogur et al. Proektirovanie konstruktsii samoletov (Aiecraft structures design), Moscow, Mashinostroenie, 1987, 416 p.

  4. Eger S.M., Mishin V.F., Liseitsev N.K. et al. Proektirovanie samoletov (Aircraft design), Moscow, Mashinostroenie, 1983, 616 p.

  5. Mainskov V.N., Glushkov S.V., Savel’ev L.M. et al. Raschet i proektirovanie proushin (Ears calculation and design), Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet im. S.P. Koroleva, 2011, 28 p.

  6. Endogur A.I. Proektirovanie aviatsionnykh konstruktsii (Aircraft structures design), Moscow, MAI-PRINT, 2009, 540 p.

  7. Rudakov K.N. FEMAP 10.2.0. Geometricheskoe i konechno-elementnoe modelirovanie konstruktsii (FEMAP 10.2.0 Geometric and finite element modeling of structures), Kiev, KPI, 2011, 317 p.

  8. Shul’zhenko M.N. Konstruktsiya samoletov (Aircraft design), Moscow, Mashinostroenie, 1971, 416 p.

  9. Ryzhov E.V. Kontaktnaya zhestkost’ detalei mashin (Contact stiffness of machine parts), Moscow, Mashinostroenie, 1966, 196 p.

  10. Timoshenko S.P., Gud’er D. Teoriya uprugosti (Theory of elasticity), Moscow, Nauka, 1975, 576 p.

  11. Segerlind L. Primenenie metoda konechnykh elementov (Application of the finite element method), Moscow, Izd-vo MIR, 1979, 393 p.

  12. Sirotkin O.S., Grishin V.I., Litvinov V.B. Proektirovanie, raschet i tekhnologiya soedinenii aviatsionnoi tekhniki (Design, calculation and technology of aviation equipment connections), Moscow, Mashinostroenie, 2006, 331 p.

  13. Shimkovich D.G. Raschet konstruktsii v MSC/NASTRANforWindows (Calculation of structures in MSC/NASTRAN for Windows), Moscow, DMK Press, 2003, 447 p.

  14. Obraztsov I.F., Bulychev L.A., Vasil’ev V.V. et al. Stroitel’naya mekhanika letatel’nykh apparatov (Aircraft structural mechanics), Moscow, Mashinostroenie, 1986, 536 p.

  15. Ruslantsev A.N., Dumanskii A.M., Alimov M.A. Trudy MAI, 2017, no. 96, available at:

  16. Popov V.V., Sorokin F.D., Ivannikov V.V. Trudy MAI, 2017, no. 92, available at:

  17. Gorshkov A.G., Tarlakovskii D.V. Dinamicheskie kontaktnye zadachi s podvizhnymi granitsami (Dynamic contact problems with moving boundaries), Moscow, Nauka, Fizmatlit, 1995, 351 p.

  18. Komarov V.A., Kuznetsov A.S., Lapteva M.Yu. Trudy MAI, 2011, no. 43, available at:

  19. Avdonin A.S., Figurovskii V.I. Raschet na prochnost’ letatel’nykh apparatov (Calculation of the strength of aircraft), Moscow, Mashinostroenie, 1985, 439 p.

  20. Khazanov Kh.S., Savel’ev L.M. Metod konechnykh elementov v prilozhenii k zadacham stroitel’noi mekhaniki i teorii uprugosti (The finite element method as applied to problems of structural mechanics and elasticity theory), Kuibyshev, KuAI, 1975, 128 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI