On one approach to the probabilistic estimation of a civilian aircraft safety landing

System analysis, control and data processing


Аuthors

Semakov S. L.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: slsemakov@yandex.ru

Abstract

The problem of probabilistic estimate of safe landing for a civilian aircraft is considered. As is known, for civilian aircrafts, multi-channel means of recording flight parameters (MMRFP) are established, and in the ground service of the airline there is a division engaged in decoding the records of MMRFP. If necessary, the entire flight can be decoded, but, as a rule, only the most important parts of the flight, including the landing, are deciphered. The following task is posed: after a real flight, relying on the MMRFP records, we have to analyze the implementation of the random landing process and we have to characterize the quality and, in particular, the degree of safety of this particular landing of the aircraft in question. As a rule, according to the MMRFP, the deviations of the flight parameters fr om their nominal values ​​at given times, such as the time of flight of the runway end, are estimated. However, often going beyond the individual restrictions set out in the Flight Manual of an aircraft not only does not create the prerequisites for an accident, but also, taking into account the whole situation, can reduce the probability of an undesirable event. Therefore, it is not individual deviations that are more important, but an integral indicator of the landing process, for example, the probability of a safe landing, by which one can objectively judge the quality of piloting (manual or automatic) and the degree of safety of the landing in general.

In this paper, an aircraft motion is described by an n-dimensional random process Υ(x)={Υ1(x),...,Υn(x)}T, where T is the transposition symbol, x is the flight distance counted from the moment the landing process is considered from a fixed point of the landing surface (or its continuation), Υ1(x) is a random process of changing the flight altitude. A safe landing is the event ZD consisting in that the component Υ1(x) reaches the zero level (the level of landing surface) for the first time at any moment x* from a given interval (x',x"), x0<x'<x" , and at this moment the condition (Υ2(x*),...,Υn(x*))∈D is fulfilled, wh ere D is the specified subset of Rn-1. A scheme is proposed that allows decoding the MMRFP record of a specific landing implementation a posteriori to assess the quality of an already perfect landing from the point of view of its safety, i.e. a posteriori estimate the probability of event ZD.

Keywords:

random process, probability, aircraft landing, safety

References

  1. Instruktsiya po organizatsii na predpriyatiyakh grazhdanskoi aviatsii cistematicheskogo sbora, obrabotki, obobshcheniya i analiza poletnoi informatsii (Instruction on organization of flight information systematic collection, processing, synthesis and analysis at civil aviation enterprises), Moscow, Vozdushnyi transport, 1984, 184 p.

  2. Ovcharov V.E. Grazhdanskaya aviatsiya, 1992, no. 1, pp. 20 – 21.

  3. Semakov S.L. Izvestiya RAN. Teoriya i sistemy upravleniya, 1996, no. 2, pp. 139 – 145.

  4. Pugachev V.S. Teoriya sluchainykh funktsii i ee primenenie k zadacham avtomaticheskogo upravleniya (The theory of random functions and its application to the problems of automatic control), Moscow, Fizmatgiz, 1962, 883 p.

  5. Bendat Dzh., Pirsol A. Prikladnoi analiz sluchainykh dannykh (Applied analysis of random data), Moscow, Mir, 1989, 542 p.

  6. Boks J., Dzhenkins G. Analiz vremennykh ryadov, prognoz i upravlenie (Time Series Analysis. Prediction and Control), Moscow, Mir, 1974, 406 p.

  7. Brown R.G. Smoothing forecasting and prediction of discrete time series, N.Y., Prentice-Hall, 1963, 468 p.

  8. Hannan E. Analiz vremennykh ryadov (Time series analysis), Moscow, Nauka, 1964, 217 p.

  9. Kil’dishev G.S., Frenkel’ A.A. Analiz vremennykh ryadov i prognozirovanie (Time series analysis and forecasting), Moscow, Statistika, 1973, 104 p.

  10. Semakov S.L., Semakov I.S. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93446

  11. Goncharenko V.I., Kobzar’ A.A., Kucheryavenko D.S. Trudy MAI, 2011, no. available at: http://trudymai.ru/eng/published.php?ID=25995

  12. Therrien C.W. Discrete random signals and statistical signal processing, N.Y., Prentice Hall, 1992, 727 p.

  13. Otnes R.K., Enochson L. Applied time series analysis, vol. 1. N.Y., Wiley, 1978, 428 p.

  14. Haykin S. Nolinear methods of spectral analysis. N.Y., Springer, 1983, 263 p.

  15. Kendall M., Styuart A. Mnogomernyi statisticheskii analiz i vremennye ryady (Multivariate statistical analysis and time series), Moscow, Nauka, 1976, 736 p.

  16. Kobzar’ A.I. Prikladnaya matematicheskaya statistika (Applied mathematical statistics), Moscow, Fizmatlit, 2006, 816 p.

  17. Van der Varden B.L. Matematicheskaya statistika (Mathematical statistics), Moscow, IL, 1960, 435 p.

  18. Wilkes S. Matematicheskaya statistika (Mathematical statistics), Moscow, Nauka, 1967, 632 p

  19. Borovkov A.A. Matematicheskaya statistika (Mathematical statistics), Moscow, Fizmatlit, 2007, 704 p.

  20. Bendat J., Pirsol A. Prilozheniya korrelyatsionnogo i spektral’nogo analiza (Сorrelation and spectral analysis applications), Moscow, Mir, 1982, 312 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход