Control of beams of trajectories of automation type stationary systems given discrete inaccurate measurements

System analysis, control and data processing


Аuthors

Nemychenkov G. I.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: grigorian_05@list.ru

Abstract

The article considers the problem of optimal control for deterministic discrete stationary automation-type systems under parametric uncertainty in the presence of discrete inaccurate measurements.

The discrete automation system (SAT) is described by recurrent equations and serves as a mathematical model of control devices in the form of a memory automation. On a continuous time period of the SAT operation a finite number its state changes occurs. At the switching moments, when the changes of the state occur, the system trajectory has jumps. The system maintains its state between switches. In contrast to the classical models of discrete systems [1, 2], changes in the states, occurring at specified (clock) moments of time, the SAT switching might be arbitrary, not predetermined by moments of time [3, 4]. The quality of one trajectory control of the system is estimated by the functional, which takes account of the switching costs. Selection of the number of switches and clock moments is one of the control resources and is a subject to optimization [5]. This does not exclude multiple switching at a fixed time [3]. Thus, the problem of optimal SAT synthesis generalizes the problem of the discrete controlled system control [1, 2].

The problems in which suboptimal beam control is optimal are of interest. The well-known results relate to the linear-quadratic problems where the linear systems control is evaluated by a quadratic quality functional. It is shown in [6] that the optimal control of the beam of trajectories of a continuous system coincides with the optimal control of one (isolated) trajectory coming from the geometric center of gravity of the set of possible initial states.

Generally speaking, the principle of separation is not fulfilled in the linear-quadratic problem of controlling the beams of the set of trajectories In the examples given in [7], the optimal control does not coincide with the optimal control for the trajectory coming from the geometric center of gravity of the set of possible initial states. The reason for this consists in the fact that the price function in the linear-quadratic control problem of non-stationary CAT is not quadratic. It is shown in [18] that for the linear-quadratic control problem of stationary CAT, the price function is piecewise quadratic. This circumstance allows prove the validity of the principle of separation (with some modification) [19].

Based on the sufficient conditions the algorithms of synthesis of suboptimal and conditional suboptimal control of beams of set trajectories are developed. The algorithm efficiency the is demonstrated by the academic example of a linear-quadratic problem.

Keywords:

automatic type system, sub-optimal control, separation principle, beam of trajectories

References

  1. Propoi A.I. Elementy teorii optimal’nykh diskretnykh sistem (Elements of the theory of optimal discrete systems), Moscow, Nauka, 1973, 256 p.

  2. Boltyanskii V.G. Optimal’noe upravlenie diskretnymi sistemami (Optimal control of discrete systems), Moscow, Nauka, 1973, 448.

  3. Bortakovskii A.S. Optimizatsiya pereklyuchayushchikh system (Switching systems Optimization), Moscow, Izd-vo MAI, 2016, 120 p.

  4. Nemychenkov G.I. Trudy MAI, 2016, no. 89, available at: http://trudymai.ru/eng/published.php?ID=73376

  5. Bortakovskii A.S., Pegachkova E.A. Trudy MAI, 2007, no. 27, available at: http://trudymai.ru/eng/published.php?ID=34013

  6. Ovsyannikov D.A. Matematicheskie metody upravleniya puchkami (Mathematical methods of beam control), Leningrad, Izd-vo LGU, 1980, 228 p.

  7. Bortakovskii A.S. Izvestiya Rossiiskoi Akademii Nauk. Teoriya i sistemy upravleniya, 2016, no. 1, pp. 5 – 26.

  8. Borisov A.V., Bosov A.V., Kibzun A.I., Miller G.B., Semenikhin K.V. Avtomatika i telemekhanika, 2018, no. 1, pp. 3 – 17.

  9. Kibzun A.I., Khromova O.M. Trudy MAI, 2014, no. 72, available at: http://trudymai.ru/eng/published.php?ID=47323

  10. Krasil’shchikov M.N., Sebryakova G.G. Navigatsiya i navedenie bespilotnykh manevrennykh LA na osnove sovremennykh informatsionnykh tekhnologii (Unmanned maneuverable aircraft Navigation and guidance based on modern information technologies), Moscow, Fizmatlit, 2005, 280 p.

  11. Rybakov K.A. Trudy MAI, 2005, no. 18, available at: http://trudymai.ru/eng/published.php?ID=34184

  12. Rybakov K.A., Sotskova I.L. Avtomatika i telemekhanika, 2006, no. 7, pp. 62 – 75.

  13. Rybakov K.A., Sotskova I.L. Trudy MAI, 2003, no. 13, available at: http://trudymai.ru/eng/published.php?ID=34443

  14. Chernous’ko F.L. Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov (Phase state estimation of dynamic systems. Ellipsoid method), Moscow, Nauka, 1988, 320 p.

  15. Khrustalev M.M., Rumyantsev D.S. Avtomatika i telemekhanika, 2011, no. 10, pp. 154 – 169.

  16. Khrustalev M.M., Rumyantsev D.S., Tsar’kov K.A. Trudy MAI, 2013, no. 66, available at: http://trudymai.ru/eng/published.php?ID=40831

  17. Fleming W.H. Optimal control of partially observable diffusions // SIAM Journal on Control, 1968, vol. 6, no. 2. pp.194 – 214.

  18. McLane P.J. Linear optimal stochastic control using instantaneous output feedback // International Journal Control, 1971, vol. 13, no. 2, pp. 383 – 396.

  19. Wonham W.M. On the separation theorem of stochastic control, SIAM Journal on Control, 1968, vol. 6. pp. 312 – 326.

  20. Bortakovskii A.S. Izvestiya RAN. Teoriya i sistemy upravleniya, 2016, no. 6, pp. 53 – 70.

  21. Bortakovskii A.S., Nemychenkov G.I. Izvestiya RAN. Teoriya i sistemy upravleniya, 2017, no. 6, pp. 20 – 34.

  22. Ioffe A.D., Tikhomirov V.M. Teoriya ekstremal’nykh zadach (Theory of extreme problems), Moscow, Nauka, 1974, 479.

  23. Letov A.M. Dinamika poleta i upravlenie (Flight dynamics and control), Moscow, Nauka, 1973, 443.

  24. Chernous’ko F.L., Melikyan A.A. Igrovye zadachi upravleniya i poiska (Game problems of control and search), Moscow, Nauka, 1978, 270 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход