Modelling and evaluation of wind impacts on parachuted radio monitoring module

Mathematica modeling, numerical technique and program complexes


Аuthors

Voskoboynikov M. A.1*, Podstrigaev A. S.2**, Davydov V. V.2***

1. Peter the Great Saint-Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia
2. Saint Petersburg Electrotechnical University “LETI”, 5, str. Professora Popova, Saint Petersburg, 197376, Russia

*e-mail: voskoboynikov97@mail.ru
**e-mail: ap0d@ya.ru
***e-mail: davydov_vadim66@mail.ru

Abstract

The article presents the development and examples of the mathematical model application, which allows estimate the wind impact on the parachuted radio-monitoring module. The antenna beam direction of the radio-monitoring module depends on the parachute and carrier design, wind forces and atmosphere parameters. The developed model allows obtain the time dependences of angular deviation of the antenna beam from the vertical (Θ angle) at various wind impacts, as well as parachute and carrier parameters. These dependences allow estimate the view area of the radio monitoring module on the ground. The mathematical model assumes high rigidity of the parachute slings and canopy. This allows applying the Newton’s second law for rotational motion to prepare mathematical expressions. Simulation based on the obtained formulas was realized in MATLAB Simulink. The main advantage of MATLAB Simulink when solving this problem is the possibility of changing variable coefficients while integrating differential equations. The wind speed in the MATLAB Simulink model is set by signal generators. This allows obtaining the time dependences of the angle for a variety of wind impacts. As a result of modeling in MATLAB Simulink, the dependences of maximum and average deviation angles for the specified parachute and carrier parameters on the wind speed at various altitudes were obtained. Simulation results allowed estimating stability of the zone of vision position of the small-sized radio-monitoring module.

Keywords:

parachute, radio monitoring, modelling, wind impacts

References

  1. Shnurkov O.I. Morskoi sbornik, 2013, no. 11, pp. 60 – 67.

  2. Likhachev V.P., Semenov V.V., Veselkov A.A., Demchuk A.A. Materialy XVI Mezhdunarodnoi nauchno -metodicheskoi konferentsii “Informatika: problemy, metodologiya, tekhnologii”, Voronezh, Izd-vo Nauchno-issledovatel’skie publikatsii, 2016, pp. 179 – 184.

  3. Brindikova I.V., Bushanskii A.S., Milyukov I.A., Tolstov A.A., Kharin A.A. Trudy MAI, 2012, no. 56, available at: http://trudymai.ru/eng/published.php?ID=30317

  4. Lobanov N.A. Osnovy rascheta i konstruirovaniya parashyutov (Fundamentals of parachute computation and design), Moscow, Mashinostroenie, 1965, 363 p.

  5. Poynter D. The Parachute Manual: A Technical Treatise on Aerodynamic Decelerators, Para Publishing, 1991, 416 p.

  6. Poynter D., Turoff M. Parachuting: The Skydiver’s Handbook, Para Publishing, 2003, 402 p.

  7. Lyalin V.V., Morozov V.I., Ponomarev A.T. Parashyutnye sistemy. Problemy i metody ikh resheniya (Parachute systems: problems and methods for their solving), Moscow, FIZMATLIT, 2009, 575 p.

  8. Wolf D.E. The Dynamic Stability of Nonrigid Parachute and Payload System, AIAA Paper, no. 209, 1970, pp. 1 – 12.

  9. Churkin V.M. Trudy MAI, 2011, no. 49, available at: http://trudymai.ru/eng/published.php?ID=27754

  10. Churkin V.M. Trudy MAI, 2015, no. 84, available at: http://trudymai.ru/eng/published.php?ID=63004

  11. Rysev O.V., Vishnyak A.A., Churkin V.M., Yurtsev Yu.N. Dinamika svyazannykh tel v zadachakh dvizheniya parashyutnykh system (Tied bodies’ dynamics in the movement problems of parachute systems), Moscow, Mashinostroenie, 1992, 288 p.

  12. Churkin V.M. Dinamika parashyutnykh sistem na etape spuska (Parachute systems dynamics at the stage of descent), Moscow, Izd-vo MAI-PRINT, 2008, 184 p.

  13. Bugrimov A.L., Vasil’chenko A.G., Leonov S.V. Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-matematika, 2011, no. 3, pp. 90 – 96.

  14. Kirichenko N.A., Krymskii K.M. Obshchaya fizika. Mekhanika (General physics. Mechanics), Moscow, MFTI, 2013, 290 p.

  15. Butenin N.V., Lunts Ya.L., Merkin D.R. Kurs teoreticheskoi mekhaniki (Course of theoretical mechanics), Moscow, Nauka, 1985, vol. II, 496 p.

  16. Kovtunenko V.M., Kamenko V.F., Yaskevich E.P. Aerodinamika orbital’nykh kosmicheskikh apparatov (Orbital Spacecraft Aerodynamics), Kiev, Naukova Dumka, 1977, 156 p.

  17. Bedrzhitskii E.L., Dubov B.S., Radtsig A.N. Teoriya i praktika aerodinamicheskogo eksperimenta (Theory and practice of aerodynamic experiment), Moscow, MAI, 1990, 215 p.

  18. Bogatkin O.G. Aviatsionnaya meteorologiya (Aviation meteorology), Saint-Petersburg, RGGMU, 2005, 328 p.

  19. Matveev L.T. Kurs obshchei meteorologii. Fizika atmosfery (General course of meteorology. Atmospheric physics), Leningrad, Gidrometeoizdat, 1984, 751 p.

  20. Atmosfera standartnaya. Parametry. GOST 4401-81 (Standard atmosphere. Parameters. State Standard 4401-81), Moscow, Standarty, 1982, 180 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход